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ABSTRACT:  Increasing evidence has accumulated to suggest that eosinophils play
a key role in the pathogenesis of asthma and other pulmonary diseases by damaging
infiltrated bronchial tissue and lung parenchyma.

The first part of this review on eosinophils describes the cellular characteristics
and properties of the cell, which help in understanding its role in disease.  The
article focuses on origin, maturation and differentiation of the eosinophil, its morpho-
logical and phenotypical properties, as well as its preformed and newly generated
mediators of inflammation.  The cause and putative significance of eosinophil
heterogeneity in respect to function and density will also be discussed.  In addition,
the naturally occurring mediators through which eosinophils are activated and
communicate with other inflammatory cells are outlined.

The first part closes with new aspects of eosinophil recruitment from the circulation
into perivascular tissue, including nonselective and putative selective adhesion
mechanisms and chemotaxis.
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Over the past 10 yrs, our understanding of the cellular
biology, function and pathophysiological role of the
eosinophil leucocyte in disease has undergone profound
changes.  From being widely considered as a modulator
of inflammation, the eosinophil is now being regarded
as an effector cell in inflammation, which exerts a range
of cytotoxic effects on various cells and tissues.  It is
not only associated with host defence mechanisms in
parasitic infestation but is also implicated in the pathogene-
sis of allergic, immunological and malignant disorders,
as well as diseases of unknown origin.

While much still remains to be elucidated about the
mechanism of eosinophil-associated inflammation, research
in recent years has led to a much better understanding
of the possible mechanisms underlying eosinophil activa-
tion, recruitment, and the potential role of mediators,
such as platelet-activating factor (PAF) and the pluripotent
actions of cytokines on this cell.  The purpose of this
article is to review current knowledge of the biology and
immunology of eosinophils with respect to their pathophy-
siological role in pulmonary disease.

Origin and differentiation

Eosinophils originate from bone marrow precursor cells
and differentiate under the control of a number of growth
or colony-stimulating factors derived from T-lymphocytes
and mesenchymal cells.  Three cytokines, granulocyte/

macrophage colony-stimulating factor (GM-CSF), inter-
leukin-3 (IL-3) and interleukin-5 (IL-5) are currently re-
cognized in promoting eosinophilopoiesis [1].  Following
a differentiation and maturation period of approximately
5 days, the mature eosinophil leaves the marrow and cir-
culates in the peripheral blood with an estimated half-
life of 13–18 h (mean blood transient time 25 h) before
migrating into the tissue.  Eosinophils are distributed in
various organs but prefer tissues that interface with an
external environment, such as the gastrointestinal, lower
genitourinary and respiratory tracts [2].  Although there
is a paucity of data on the longevity of the cells, eosinophils,
sequestered in tissues, are likely to persist for at least 6
days.  However, the life-span of tissue eosinophils may
be extended by the effect of systemically and locally
released cytokines, such as IL-5 and GM-CSF [3, 4].

Morphology

The most distinguishing morphological features of the
eosinophil are a bilobed nucleus and large eosinophilic
granules, which stain yellow-pink with eosin and other
acid aniline dyes [5].  These elliptical secondary or specific
granules possess an electron-dense crystalloid core, that
is embedded in a less electron-dense matrix (fig. 1).  They
appear after the myelocyte stage and may develop from
large spherical primary lysosomal granules [6].  Some
of these primary granules are thought to develop into
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smaller homogeneous dense cytoplasmic bodies containing
lysophosphatase [7, 8], which crystallize in vivo and in
vitro to form the distinctive bipyramidal Charcot-Leyden
crystals [9, 10].  A third type of granule, the so called
small granules, are less conspicuous.  They form during
the metamyelocyte stage, and increase progressively in
number with cellular maturation to become small and
less electron-dense homogeneous cytoplasmic structures
[11].  All three granules are present in the mature eosino-
phil [7, 8] (fig. 2), and all contain different constituents
(table 1).

Eosinophils also show smooth, elongated, rounded, C-
shaped or circular-shaped membrane-bound cytoplasmic
structures, that are generally empty but are thought to
play a role in the extrusion processes of the cell.  They
were previously referred to as microgranules [12], but
are best identified as vesiculotubular structures [13, 14].
They can be differentiated from the small granules by
the lack of a less-electon dense outer matrix.

C. KROEGEL ET AL.520

Fig. 1.  –  a) Transmission; and b) scanning electron micrographs of resting human eosinophil leucocytes obtained from the blood.

Fig. 2.  –  Morphology and characteristic organelles of the human
eosinophil leucocyte.
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Table 1.  –  Distinct cytoplasmic structures of the human eosinophil leucocyte

Spherical cyloplasmic structure           Appearance during differentiation                      Constituents/function

Primary granule Immature eosinophil leucocyte Lysophosphatase
(promyelocyte)

Secondary granule Mature eosinophil leucocyte Basic proteins (MBP, ECP, EPX),
("specific" granule) hydrolases (collagenase, β-glucuronidase)

eosinophil peroxidase

Small granule Mature eosinophil leucocyte Arylsulphatase B, acid phosphatase

Microgranules Mature eosinophil leucocyte Transport system
(vesiculotubular-structures)

Lipid bodies Mature activated Storage of unsaturated fatty acids
eosinophil leucocyte

MBP: major basic protein; ECP: eosinophil cationic protein; EPX: eosinophil protein X.



Other prominent organelles in eosinophils are lipid
bodies [15], which have also been identified in a wide
variety of mammalian cells.  Lipid bodies are round os-
mophilic, non-membrane-bound structures and often larger
than specific granules.  Their numbers increase during
activation of eosinophils, and they appear to serve as
intracellular sites of arachidonic acid storage and metabo-
lism [15, 16], though their full function has not yet been
delineated.  Eosinophils also contain ubiquitous organelles,
such as the rough endoplasmatic reticulum, free ribo-
somes, a small Golgi apparatus and mitochondria.  The
latter two seem to become more prominent in activated
cells [17] (fig. 2).

Membrane receptors and surface markers

In recent years, a number of cell surface receptors and
proteins have been identified on human eosinophils, which
can be divided into binding sites for immunoglobulins,
lipid mediators, complement proteins, cytokines and ad-
hesion molecules [18].  A summary of the receptors
currently recognized is given in figure 3.

Eosinophil leucocytes share many antigens found on
other circulating white blood cells, such as the class I
human leucocyte antigen (HLA) and the common leucocyte
antigen CD45 [19, 20].  Although a specific epitope has
not yet been identified, eosinophils can be differentiated
from other leucocytes because they lack certain antigenic

determinants.  It is of particular significance that native
eosinophils do not express the immunoglobulin G (IgG)
receptor FcγRIII (CD16), an observation which is currently
used to distinguish between eosinophil and neutrophil
populations [21].  In addition, unlike monocytes, which
express FcγRI and FcγRII, and neutrophils, which express
FcγRII and FcγRIII, eosinophils bear only the FcγRII
receptor (CDw32) on their membrane surface [20, 22].
However, a recent report has demonstrated that eosino-
phils cultured in the presence of interferon-γ (IFN-γ)
induce both FcγRI (CD64) and FcγRIII (CD16) [23].  In
addition, whereas freshly isolated blood eosinophils res-
pond poorly when challenged with anti-IgG and secreted
only eosinophil cationic protein (ECP) [24, 25], INF-γ-
exposed eosinophils responded to anti-CD16 antibodies
with a significant release of leukotriene C4 (LTC4) [23].

Immunoglobulin E (IgE) receptors on human eosino-
phils have been demonstrated by the rosette technique
(using IgE myeloma protein bound to red cells), as well
as by radioligand studies using 125I-labelled IgE [26–28].
This receptor appears to be similar, but not completely
identical, to the FcεRII (CD23) low-affinity receptors
on lymphocytes, monocytes and other cells [28], since
the CD23 antibody does not bind to the cells.  There
appear to be increased numbers of FcεRII receptors on
hypodense and normodense eosinophils from patients
with eosinophilia, when compared to eosinophils from
normal subjects [29].  Functionally, binding of IgE leads
to the release of eosinophil peroxidase (EPO) [30] and
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Fig. 3.  –  Schematic representation of surface antigens identified on eosinophils.  Some of the antigens are upregulated (+), downregulated (–) or
induced (  ) following recruitment from the circulation into tissue.  The existence of an IgE receptor on eosinophils is still a matter of ongoing
debate (?).  CD: cluster differentiation; CR: complement receptor; FcγR: IgE-receptor; IgG-receptor; GM-CSF: granulocyte/macrophage colony-stimulating factor;
HLA-DR: human leucocyte antigen-DR; ICAM: intercellular adhesion molecule-1; Ig: immunoglobulin; IL: interleukin; LTB4: leukotriene β4: MIP:
macrophage inflammatory protein; PAF: platelet-activating factor; PAF-RI: high-affinity PAF receptor; PAF-RII: low-affinity PAF receptor; PGE:
prostaglandin E; RANTES: regulated upon activation in normal T-cells expressed and secreted; TNF: tumour necrosis factor; VLA: very late activation
antigen. (Modified after KROEGEL et al. [18] 1992).
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generation of platelet activating factor (PAF) [24], but
fails to secrete ECP.

The same group [30] reported that human and animal
eosinophils bind monomeric or secretory immunoglo-
bulin A (IgA), though with a relatively low affinity.
Only recently, the expression of FcαR on eosinophils
was confirmed using immunofluorescence analysis of
blood eosinophils from normal and allergic individuals
[31].  Although neutrophils expressed much higher levels
of FcαR than eosinophils in normal blood, eosinophils
obtained from allergic subjects displayed enhanced FcαR
expression, whereas neutrophils did not.  Challenge of
eosinophils with IgA and particularly the IgA-dimer
causes significant degranulation, including the release of
EPO [25, 30] and ECP [32].

Normal blood eosinophils do not express immunoglo-
bulin M (IgM) receptors [29, 33, 34], although IgM
binding to eosinophils can be induced by culturing them
in the presence of cytokines [34].  The potential functional
effects of IgM binding to eosinophils are as yet not known.

In addition to immunoglobulin receptors, a number of
adhesion molecules have been detected on eosinophils,
including the β1-integrin very late activation antigen
(VLA) (CD29, CDw49), the β2-integrins CD11a, CD11b
(CR3), CD11c and their common β-chain CD18, the
immunoglobulin superfamily (intercellular adhesion
molecule-1 (ICAM)-1, CD16, CD31, CD32, CD58), as
well as selectins, the major histocompatibilty antigen
HLA-DR, CD4, CD69 and interleukin-2R (IL-2R) [19,
35–44].  Some of these surface antigens are expressed
only on activated eosinophils (see below).  The leucocyte
integrins facilitate the intercellular adhesion of eosinophils
to microvascular endothelium [45–47], and are essentially
involved in the recruitment and migration of the cell into
inflamed tissue (see below).  They may also be involved
in binding of other ligands, such as opsonized targets
[48–52] and modifying other basic cellular functions.

Both eosinophil precursors and mature cells express
the cell surface glycoprotein CD4 [53, 54], which has
originally been known to be present on T-helper lympho-
cytes and on leucocytes of the monocyte/macrophage lin-
eage.  The CD4 binds human immunodeficiency virus-1
(HIV-1) gp 120 and can act as a signal transducer to
elicit eosinophil migration [55].  Employing interleukin-
5 (IL-5) stimulated bone marrow cultures, it has been
shown that HIV-1 can infect eosinophil precursor cells
in vitro [54], suggesting that eosinophils may serve as a
reservoir for the virus in vivo.

Receptors for the complement factors C1q, C3a, C3b/C4b
(CRI), iC3b (CR3), C3d and C5a have also been iden-
tified on human eosinophils [19, 56–59].  However, eo-
sinophils have far fewer of these receptors than neutrophils
and both the structure and affinity of the C5a receptor
differs from that of the C5a receptor on neutrophils [60].
The proportion of complement bearing eosinophils ranges
from 30% in normal individuals to 40% in patients with
parasitic infestations [33].  The chemotactic peptide N-
formyl-methionyl-leucyl-phenylalanine (fMLP) enhances
the number of C3b receptors [61].  In addition, ECF-A,
histamine and its major catabolite, imidazole acetic acid,
have been reported to increase the expression of C3b and

C4 receptors on human eosinophils, whereas C3d and
IgG (Fcγ) receptors remained unaffected [56].

As mentioned above, eosinophils express receptors for
iC3b (CR3), a degradation product of C3b.  Functionally,
CR3 appears to be similar to the receptor for C3b, causing
binding of particles coated with iC3b to a phagocytic
cell surface but failing to trigger ingestion in the absence
of a second signal [62].

Eosinophils express a number of receptors for lipid
mediators, including prostaglandin E (PGE), leukotriene
B4 (LTB4), and PAF.  PAF represents one of the most
potent naturally occurring stimuli for eosinophils, induc-
ing not only chemokinesis and chemotaxis but also release
of granular proteins, production of oxygen radicals and
synthesis of lipid mediators such as LTC4, thrombo-
xane A2 (TXA2), and prostaglandin D2 (PGD2) [63, 64].
Its effect on eosinophils can be substantially augmen-
ted after exposure of eosinophils to certain cytokines,
such as interleukin-5 (IL-5) or GM-CSF [4, 65–70].

Both functional and binding studies suggest the presence
of two binding sites for PAF on eosinophils with an
apparent kD of 0.33 nM and 11.5 nM, respectively [71].
Occupation of the high affinity PAF-RI receptor correlates
with several functional responses, including degranulation
and prostanoid release.  In contrast, occupancy of the
PAF-RII receptor is associated solely with the generation
of O2

- radicals.  The PAF receptor subsets utilize different
signal transduction pathways with distinct intracellular
second messengers and enzymes, which may account for
their functional differences [71–73].  It is not clear, as
yet, whether the two PAF receptors identified on eosino-
phils represent distinct binding sites, or whether they
reflect two different affinity states of the same receptor.

Finally, several binding sites for cytokines have been
detected on eosinophils, including the receptors for IL-
3, IL-5, and GM-CSF [74–78].  Interestingly, these recep-
tors show mutual cross-inhibition on eosinophils but not
on neutrophils [74, 75], which may be due to a limited
expression of the common β-chain by eosinophils [79].

Cellular constituents and products

Preformed granular constituents

The eosinophil constitutes a number of enzymes and
highly biologically active preformed basic proteins which
are stored in their cytoplasmic granules (table 2).  The
electron-dense crystalloid core consists of major basic
protein, and the surrounding matrix is composed of a
number of basic proteins and various hydrolytic enzymes.

Four different cationic proteins are recognized in the
specific eosinophil granules [80]: the major basic protein
(MBP), ECP, eosinophil-derived neurotoxin or protein
X (EDN or EPX), and eosinophil peroxidase (EPO).
Each of these proteins have been cloned and their bio-
chemical and functional properties are well-established
[81–88].  The most abundant cationic eosinophil granule
protein is MBP.  It is an arginine residue rich 14 kDa
protein [82, 83, 85] devoid of any enzymatic activity,
but highly toxic to helminthic parasites, tumour cells,
and other mammalian cells and tissues.  As will be
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outlined below, MBP has toxic properties independent
of oxygen metabolism.

Like MBP, the "eosinophil cationic protein" (ECP) is
a highly cationic protein, with toxic effects for helminthic
and host cells.  In addition, it shows a bactericidal acti-
vity [89].  ECP shares sequence similarities with the
eosinophil-derived neurotoxin (EDN or EPX), and both
polypetides are of approximately the same size, ranging
between 18–21 kDa [81, 84, 90, 91].  Both ECP and
EDN induce cerebellar dysfunction, when injected intracere-
brally into rabbits [80, 91, 92], as first described by
GORDON [93] in 1930 (Gordon-phenomenon).  In addition,
these proteins have both partial sequence identity with
pancreatic ribonuclease and possess a ribonuclease catalytic
activity.  Whilst EDN is about 100 times more potent as
a ribonuclease than ECP [81, 91], it is devoid of any
cytotoxic activity against parasites and host cells.

The fourth basic protein is the eosinophil peroxidase,
which consist of two polypetides of about 15 and 55 kDa
[87, 88, 94, 95].  It is characterized by an overall negative
charge but its major function comprises the formation of
hypohalous acid in the presence of hydrogen peroxide
and halide ions (preferentially bromide).  Structurally and
functionally EPO is distinct from the myeloperoxi-
dase of neutrophils and monocytes and is toxic to helmin-
thic and protozoan parasites, bacteria, tumour cells, and
host cells [80, 96–99].

De novo synthesized products

Eosinophils have, for some time, been known to syn-
thesize oxygen radicals and lipid mediators (table 3).
However, the eosinophil, like the neutrophil, has been
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Table 2.  –  Preformed enzymatic and nonenzymatic proteins of the human eosinophil leucocyte

Proteins Biological actions

Nonenzymatic proteins
Major basic protein Helminthotoxic, cytotoxic for tumour cells and other mammalian cells, activates mast cells, neutralizes
(MBP) heparin
Eosinophil cationic protein Affects coagulation factors, helminthotoxic, neurotoxic, activates mast cells, cytotoxic for various
(ECP) mammalian cells, possesses RNase-activity
Eosinophil-protein X Strongly neurotoxic, helminthotoxic, inhibits lymphocyte cultures, RNAse-activity
(EPX or EDN)

Enzymatic proteins

Eosinophil peroxidase Toxic for microorganisms, tumour cells and other mammalian cells, activates mast cells
(EPO)
Collagenase Hydrolyses Type I and Type II collagen (connective tissue of the lung)
Arylsulphatase B Hydrolyses proteoglycans and glycosaminoglycans
β-glucuronidase Hydrolyses glycosides

EPX: eosinophil protein X; EDN: eosinophil-derived neurotoxic; RNase: ribonuclease.

Table 3.  –  De novo generated mediators by the human eosinophil leucocyte

Mediator Biological actions

Lipids

PGE2 Vasodilatation, mucus secretion, inhibition of inflammatory cells
PGD2 Bronchoconstriction, pulmonary vasoconstriction, increase in vascular permeability, platelet aggregation
PGF2α Bronchoconstriction, platelet aggregation
TxA2 Bronchial  and vascular constriction, platelet aggregation
LTC4 Bronchial and vascular constriction, increase in vascular permeability
PAF Bronchial and vascular constriction, bronchial oedema, platelet aggregation, mucus secretion, activation

of neutrophils, mast cells and eosinophils
ECL Eosinophil chemoattractant

Oxygen metabolites

Superoxide anion Toxic for micro-organisms, tumour cells and other mammalian cells
Hydrogen peroxide Toxic for micro-organisms, tumour cells and other mammalian cells
Singlet oxygen Toxic for micro-organisms, tumour cells and other mammalian cells

Cytokines

IL-3 Priming and activation of inflammatory cells, granulocyte differentiation, enhances survival
GM-CSF Priming and activation of inflammatory cells, granulocyte differentiation, enhances survival
TGF-β1 Activation of fibrocytes, Th2 cytokines inhibition

Neuropeptides

VIP Bronchoconstriction, vasodilatation
Substance P Bronchoconstriction, vascular oedema, vasodilatation, stimulates mucus secretion, degranulation of

mast cells

PGE2: prostaglandin E2; PGD2: prostaglandin D2; PGF2α: prostaglandin F2α: TxA2: thromboxane A2; LTC4: leukotriene C4: PAF:
platelet-activating factor; IL-3: interleukin-3; GM-CSF: granulocyte/macrophage colony-stimulating factor; TGF-β1: tumour growth
factor-β1: VIP: vasoactive intestinal peptide; ECL: eosinophil chemotactic lipid.



assumed to be a short-lived, end-stage effector cell, with
little or no capacity for protein synthesis.  However, this
assumption about the capabilities of mature eosinophils
is probably not warranted.  Blood eosinophils cultured
in the presence of GM-CSF and murine 3T3 fibroblast
[38], or eosinophils obtained from bronchoalveolar space
during chronic inflammation [35, 37, 42], synthesize and
express human leucocyte antigen-DR (HLA-DR), exempli-
fying the principal capacity of mature eosinophils to
synthesize proteins.  In addition, recent studies employ-
ing in situ hybridization suggest that eosinophils express
the gene for GM-CSF, IL-3 and transforming growth
factor-β1 (TGF-β1) [100–103].  Further, ionomycin-
activated human eosinophils also gave specific immuno-
cytochemical staining with α-human-cytokines [101],
providing evidence for translation of cytokine messenger
ribonucleic acid (mRNA).  These data suggest that the
mature eosinophil is not only capable of releasing de
novo generated lipid mediators and oxygen radicals but
can also synthesize new proteins.

Oxygen radicals.  Eosinophils respond to stimulation with
a respiratory burst generating toxic oxygen radicals, such
as O2

- [104–106], H2O2 [104,105,108–110], and probably
1O2 as well as OH· [111, 112].  With most stimuli, the
respiratory burst of eosinophils is greater than that of
equivalent numbers of neutrophils [104, 105, 107, 109,
113].  A reduced nicotinamide adenine dinucleotide
(NADPH) oxidase, similar to that present in neutrophils,
appears to be involved [104, 106, 107].  NADPH oxidase
activity was reported to be three to six times greater in
eosinophils than in comparable neutrophil preparations
[104], and eosinophils contain a cytochrome b559 con-
centration that is twice that of neutrophils or monocytes
[114].

Lipid mediators.  Stimulation of human and animal
eosinophils with various soluble and nonsoluble agents
leads to the formation of various arachidonic acid-derived
lipids, including LTC4 [63, 69, 115–117], PGE [118,
119], prostaglandin F1 (PGF1) and TxA2 [64, 119–123],
PGD2 and prostaglandin F2α (PGF2α) [64, 123].  In addit-
ion, eosinophils have been shown to synthesize large
amounts of PAF [117, 124–126].

Cytokines.  Recent work has demonstrated that eosinophils
contain the genetic information for a number of cytokines.
Various studies employing in situ hybridization suggest
that eosinophils express the genes for GM-CSF, IL-3 and
TGF-β1 as well as transforming growth factor-α (TGF-
α) [100–103].  In addition, the cytokines could be detected
immunocytochemically in human eosinophils when stained
with monoclonal antibodies, providing evidence for
translation of cytokine mRNA [100, 102].  Finally, IL-
3 and GM-CSF were measured in ionomycin-stimulated
supernatants [101].  The ability to release cytokines
represents a new method by which eosinophils may contri-
bute to inflammatory and immunological responses.

Neuropeptides.  Neuropeptides represent a group of neuro-
transmitters which have originally been identified in

neuronal tissue.  However, recent studies have shown
that some of these peptides, such as substance P (SP),
vasoactive intestinal peptide (VIP) or somatostatin (SOM),
are also released by immune cells and serve to modulate
cytokine secretion by regulatory T-lymphocytes [127].
Eosinophils within the liver and intestinal granulomas of
the mouse synthesize VIP and SP [128–130).  In addition,
eosinophils have been demonstrated to release SP in vitro
when exposed to histamine via activation of a H1 type
receptor [129].  Furthermore, SP but not VIP has been
shown to induce eosinophil degranulation, albeit through
a toxic mechanism [131].  Hence, it appears that eosino-
phils also regulate local inflammation through the release
of neuropeptides.

Eosinophil heterogeneity

When examined under in vitro or in vivo conditions,
eosinophils show differences in their morphological,
phenotypical, physical and functional status (table 4).
The significance of cellular heterogeneity is not yet known,
but it may reflect a certain phase in the life cycle of the
cell and facilitate adaptation of the eosinophil to the
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Table 4.  –  Characteristic cellular changes of the eosinophil
following activation in vitro and in vivo

Cellular changes                         Consequences

Morphology

Dissolution of secondary Degranulation
granules
Increase in cell volume Hypodensity
Large empty vacuoles Hypodensity
Vesiculotubular structures Degranulation, metabolism

Phenotype

Increased expression of CD11a
surface antigens CD11b
Induction of surface antigens CD13

LFA-3 (CD58)
HLA-DR
CD69
CD4
ICAM-1 (CD54)

Decreased expression of CD35
surface antigens CDw32

VLA-β-chain (CD29)
VLA-α-chain (CD49d)
PECAM-1 (CD31)

Loss of surface antigens L-selection

Density

Decrease in cellular density Proportion >10% of all cells
(hypodense cells) (specific weight <1.082 g·ml-1)

Function

Desensitization Transient, i.e. following
exposure to PAF or other stimuli

Hypersensitization (priming) Induced by cytokines and low
concentrations of other
mediators

LFA-3: leucocyte function associated antigen-3; HLA-DR:
human leucocyte antigen-DR; ICAM-1: intercellular adhesion
molecule-1; VLA: very late activation antigen; PECAM-1:
platelet endothelial cell adhesion molecule.



changing conditions or microenvironment during an acute
inflammatory process.  Cellular heterogeneity, however,
is not specific for eosinophils, and has been also observed
in alveolar macrophages [132] and neutrophils [133, 134].

Morphological heterogeneity

Eosinophils from patients with eosinophilia are morpholo-
gically distinct when compared to cells obtained from
healthy subjects.  The cells are characteristically hypodense
and other changes include the appearance of cytoplasmic
vacuoles, alteration in cell size and shape, increase in
granule size, solubilization and loss of granular core and
matrix proteins, together with an increase in vesiculotubular
structures and smooth tubules and vesicles [8, 135].
Similar changes can be induced by exposure of eosinophils
to cytokines or PAF in vitro [3, 4, 65, 66, 135, 136] sug-
gesting that the morphological heterogeneity of eosino-
phils is caused by inflammatory mediators in vivo.

Phenotypical heterogeneity

It is an inherent property of cells to modify the expression
of surface receptors, and eosinophils are no exception.
Some receptors may be upregulated, as has been shown
for the complement receptors, and adhesion molecules
[19, 43, 137, 138].  Others are only synthesized and ex-
pressed in primed or activated eosinophils, such as Class
II proteins of the major histocompatibility complex, CD4,
ICAM-1 or IL-2 [37–42, 53, 139].  Others again, such
as L-selectin are shed during eosinophil activation and
transendothelial migration [35, 43].

An experimental approach in order to characterize such
principal phenotypic changes of eosinophils undergoing
activation is to compare bronchoalveolar lavage (BAL)
and blood cells from different diseases [140].  As has
recently been demonstrated, BAL eosinophils obtained
from patients with atopic asthma and eosinophilic pneu-
monia showed an upregulation of the β2-integrins CD11b
and CD11c, the aminopeptidase N (CD13), the glyco-
protein CD24, the tyrosine phosphatase CD45, as well
as the leucocyte function antigen-3 (CD58) by 51–222%.
In contrast, the β-integrins CD29 and CDw49 (VLA-4),
the β2-integrin CD11a, the FcγRII (CDw32), the complement
receptor CR1 (CD35) and other antigens (CD15, CD63,
HLA-ABC) were downregulated by 30–73%.  Furthermore,
in both diseases the "intercellular adhesion molecule-1"
(ICAM-1) was induced on BAL eosinophils, whilst L-
selectin was shed by 94 and 98%, respectively.  Interestingly,
significant levels of the HLA-DR antigen were exclusively
detected on BAL eosinophils from eosinophilic pneumonia;
whereas, eosinophils obtained during the asthmatic late
response from both BAL and peripheral blood did not
express this class II major histocompatibility complex
(MHC) antigen.  Since expression of HLA-DR requires
de novo synthesis, the reason why eosinophils 18 h post-
antigen challenge do not express this antigen may simply
be the limited time.  The above data, however, suggest
that tissue infiltrating eosinophils obtained during active
disease undergo similar phenotypical changes, indicating

a general mechanism of activation during recruitment
into lung airways (see below).

The phenotypic changes observed in vivo can be imitated
by appropriate treatment of native blood cells in vitro.
For instance, blood eosinophils stimulated in vitro with
IL-5, PAF or fMLP achieved similar levels of CD11b
and VLA-4 expression as BAL eosinophils obtained 18
h post-challenge [20, 138, 141–144].  The stimuli also
caused a decrease in L-selectin expression in eosino-
phils.  Interestingly, whilst PAF and fMLP also induced
comparable changes in neutrophils, IL-5 selectively
affected the surface expression of adhesion molecules in
eosinophils [141].  In contrast to blood cells, surface
antigen expression on BAL eosinophils obtained 18 h
post-challenge could not be further modified by either
stimulus ex vivo [138].  Blood eosinophils cultured in
vitro for 2 days in the presence of IFN-γ showed an
upregulation of FcγRII (CDw32),  and induced the
expression of FcγRI (CD64) as well as a functionally
active FcγRIII (CD16) receptor [23].  Taken together,
these data suggest that surface receptor expression in
eosinophils in vitro or in vivo follows a similar pattern,
and indicates that eosinophils undergo activation during
the recruitment process into the tissue.

Density heterogeneity

Eosinophils from healthy donors have the highest density
of human peripheral blood leucocytes, and it is this
property which forms the basis of the purification technique
using density gradients.  However, blood from patients
with eosinophilia-associated diseases, such as the hyper-
eosinophilic syndrome (HES),  parasitic infection or
allergy, contains a population of eosinophils which separate
at a lower buoyant density.  This population is termed
"hypodense", as opposed to "normodense" eosinophils
from normal individuals mentioned above [145].  Whilst
normodense eosinophils represent approximately 90% of
the cells found in normal subjects [146–148], peripheral
blood eosinophils from patients with certain eosinophil-
associated diseases, such as allergic rhinitis [149], asthma
[146, 147, 150, 151], allergic bronchopulmonary asper-
gillosis and helminthic parasite infestation [2, 148], or
an eosinophilic-myalgia-like syndrome [152], show an
increased proportion of hypodense cells.  In asthma, the
mean percentage of hypodense blood eosinophils for pat-
ients with asthma in three studies varied between 35 and
65% [146, 147, 150].  In other active hypereosinophilic
diseases, hypodense cells may account for up to 80% of
the eosinophils [152].

In addition to blood cells, BAL eosinophils also constitute
a high proportion of hypodense cells.  This has been
shown for eosinophils in the BAL fluid obtained from
allergic asthmatics 48 h post-segmental allergen challenge
[138, 153], chronic eosinophilic pneumonia [148, 154],
as well as for other eosinophil-related disorders.  In
addition, a raised number of hypodense eosinophils have
been found in pleural fluid recovered from patients with
various lung diseases [148, 155].

The nature of this density heterogeneity and the mechani-
sm(s) underlying the development of hypodense eosinophils
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is not yet known.  In principle, hypodense eosinophils
may represent: 1) a more mature, activated cell; 2) an
immature cell; 3) a separate lineage of eosinophils; or
4) some combination of the above possibilities.  However,
the data so far available support the first hypothesis.
Firstly, when exposed to PAF in vitro, eosinophils undergo
a time and concentration-dependent shift towards lower
densities relative to the unstimulated control cells, there-
by increasing the proportion of hypodense cells from 9%
to 28% after 60 min and to 82% after 120 min [136].
The light-density eosinophils were found to be degranu-
lated, contained less granules, showed an increase in cell
volume, and upregulation of adhesion molecules [23,
136].  Similar morphological and phenotypic features
were observed in the hypodense blood eosinophils of
patients with allergy, eosinophilic pneumonia or parasitic
infection [2, 18, 37, 145].  Secondly, incubation of normo-
dense eosinophils, either with IL-3, IL-5 or GM-CSF, in
the presence or absence of 3T3 fibroblasts, not only
prolongs survival of eosinophils but also induces them
to become hypodense (see reviews [65, 145]).

Taken together, these data clearly indicate that exposure
of eosinophils to one or more mediators of inflammation
induces a shift towards lower cell densities.  Hence, a
raised proportion of hypodense eosinophils may reflect
activation of the cell and, in turn, an actively ongoing
disease state.  Since the cell density is determined by the
ratio of cell weight to cell volume, the data so far avail-
able suggest that both loss of granular proteins and an
increase in cell volume may contribute to the reduction
of density in eosinophils [136].

Functional heterogeneity

The functional relevance of hypodense eosinophils is
not yet understood and the data available appear somewhat
conflicting.  For instance, low density eosinophils from
HES patients are cytotoxic to IgE-coated schistosomula,
whilst normodense eosinophils are cytotoxic to IgG-
coated schistosomula [156].  Secretion of eosinophil
peroxidase by low density eosinophils from HES patients
is caused by stimulation with antigen or anti-IgE, whilst
normodense eosinophils from HES patients respond to
anti-IgG [157].  In addition, eosinophils from patients
with parasitic diseases show a slightly reduced density
and an increased cytotoxicity towards IgG-coated chicken
erythrocytes [158].  Low density eosinophils obtained in
vitro by incubation with GM-CSF are cytotoxic to IgG-
coated schistosomula [65].  Furthermore, light density
eosinophils from patients with HES generate and release
greater amounts of leukotriene C4 in response to IgG- or
complement-coated targets and the monocyte-derived
eosinophil-activating factor (EAF) than do normal density
eosinophils [155, 159, 160].  Low density eosinophils
from patients with HES show an increased deoxyglucose
uptake and oxygen consumption and incorporation of
PAF into the phospholipid pool than normodense cells
[155, 161, 162] indicating a higher metabolic activity in
light density eosinophils.

However, in contrast, some other studies indicate that
hypodense eosinophils may also occur in a hyporeactive
state.  For instance, hypodense cells obtained from asth-

matic subjects produced a lower amount of reactive
oxygen metabolites in response to zymosan and phorbol
myristate acetate (PMA), as assessed by nitro blue tetra-
zolium (NBT) reduction and chemiluminescence [4, 147].
In addition, low-density eosinophils obtained from asth-
matic subjects produced only half the amount of LTC4

compared with normodense cells [115].  Furthermore,
BAL, eosinophils from asthmatic subjects obtained 18 h
post-allergen challenge showed a reduced capacity to
generate prostanoids compared to blood eosinophils [163].

The reason for this discrepancy is not yet clear.  Since
an array of mediators are released during asthmatic infla-
mmation [153, 164, 166], which may be responsible for
both chemotactic attraction to the inflammatory focus
and stimulation of cellular effector functions, the attenu-
ated functional capacity of BAL eosinophils may be due
to a cellular desensitization process, as has been previously
described for eosinophils [72, 73, 167].  Interestingly,
neutrophils recruited to the lung following segmental
antigen provocation have also been found to be desen-
sitized to LTB4 [168], suggesting that desensitization
during tissue infiltration may be a necessary general
process for accumulation at the spot with the highest
level of chemoattractant.  If this is true, one may hypothe-
size that hypodensity of eosinophils does not simply
reflect cellular hyperreactivity.  In contrast, the functional
reagnicity of eosinophils in relation to their density may
be rather variable, depending on what factors the cell is
exposed to in the microenvironment of the bronchial
tissue, and could be controlled by inherent cellular feedback
mechanisms which serve to protect the cell against
overstimulation.

Activation and priming

An increasing number of substances with potential
eosinophil-activating properties have been identified (table
5).  Among them, calcimycin, also known as the Ca2+-
ionophore A23187, a polyether antibiotic produced by
Streptomyces chartreusensis, and the tumour-promoting
agent, PMA, represent valuable tools for evaluating the
potential role of either Ca2+ or protein kinase C (PKC)
and their interaction in eosinophil activation.  However,
since these agents are nonphysiological and cytotoxic at
certain concentrations [146, 169, 170] they have no patho-
physiological significance in vivo.  Other factors, such
as the mast cell-derived acidic tetrapeptides, Val-Gly-
Ser-Glu and Ala-Gly-Ser-Glu (eosinophil chemotactic
factor of anaphylaxis (ECF-A)), which have been studied
at several laboratories in recent years and which were
considered to be selective eosinophil chemoattractants
[171], are now known not only to be ineffective in vivo
[172] but also to show negligible activity in vitro when
compared to other stimuli [173, 174].

An increasing number of physiological agents that
stimulate eosinophils have been identified, including lipid
mediators such as LTB4 or PAF, cytokines, immuno-
globulins and tachykinins such as substance P [65, 131,
175, 176], all of which may be best divided on the basis
of their chemical structure and molecular weight into
lipids, peptides and proteins.
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Lipids.  Lipid mediators are derivatives of the membrane
phospholipids and are de novo generated upon stimulation
of the cell.  Among them, leukotrienes and PAF have
been implicated in the pathogenesis of various inflammatory
diseases [175].  In asthma, for instance, PAF appears to
represent one of the most effective mediators, capable
of inducing bronchoconstriction [177, 178], microvascular
leakage [179, 180], and airway hyperresponsiveness in
animals [181] and humans [182].  Hence, PAF can mimic
many of the changes occurring during the late asthmatic
response.  Furthermore, it has been demonstrated that
PAF is a potent stimulus for several inflammatory cells,
including eosinophils, and might be an important factor
responsible for inflammatory cell infiltration in asthma
[183–185].  In addition, there is evidence that eosinophil
responsiveness to PAF may even increase during active
disease [173, 186, 187].  PAF-elicited a spectrum of
eosinophil functions, such as eosinophil chemotaxis, in
vitro [173] and in vivo [188–191], eosinophil adhesion
to endothelial cells [46, 192–194], eosinophil cytotoxicity
against parasites [195], generation of superoxide anions
[187, 196], release of granular enzymes and proteins
[187, 196–198], and a shift in density from normodense
to hypodense eosinophils [136] and several cyclooxyge-
nase-derived arachidonic acid metabolites [64, 119, 121].

Not only is PAF a potent eosinophil-activating factor,
but eosinophils are also the major source of this mediator
[125].  As with other cells, this observation suggests that
cells capable of producing a certain lipid mediator also
respond to it.  A major role of the lipids, therefore, may
be to attract more effector cells to an inflammatory site
through an amplification loop.  In addition, PAF may
function as an autocoid, modulating the eosinophil res-
ponse induced by other agonists, such as C5a or fMLP.
Such a function has been attributed to the mode of action
of interleukin-2 in T-helper cells.  Evidence to support

this hypothesis in eosinophils can be drawn from results
showing that the PAF receptor antagonist WEB 2086
partially inhibits thromboxane B2 (TxB2) release from
eosinophils stimulated with calcimycin [73, 119].  Hence,
the release of PAF by eosinophils upon stimulation may
result in an autocrine response amplification loop.  However,
PAF synthesized in eosinophils tends to remain cell-
associated [125], and the possible role of PAF as an
autocoid in eosinophil activation awaits further investi-
gation.

A couple of studies indicate that PAF, in addition to
its direct stimulatory effect, may also prime eosinophils
[116, 199].  For instance, preincubation of human blood
eosinophils with PAF for 30 min, significantly enhanced
the calcimycin-induced LTC4 production [116], as well
as the respiratory burst induced by serum-treated zymo-
san [199], whereas LTB4 failed to enhance the eosino-
phil mediator production [116].  Hence, taken together
PAF would perfectly link the pathophysiological changes
observed in asthma with the infiltration and activation
of eosinophils.  Unfortunately, however, PAF is not selec-
tive and acts on both neutrophils and eosinophils [186],
suggesting that other mediators may also be operative in
eosinophil recruitment (see below).

Peptides.  A number of peptides have been shown to stimu-
late eosinophils.  SP induces eosinophil granular protein
release, though presumably via a nonspecific mechanism
[131].  Formyl-methionine-containing peptides such as
fMLP are chemotactic for a number of cell types and
show certain similarities to chemotactic factors produced
by bacteria.  Eosinophils express specific fMLP receptors
[131, 200], and respond to the tripeptide with chemo-
taxis, degranulation, superoxide anion generation, and
prostanoid production [73, 131, 200–202].  Although its
effect is small compared to other stimuli, overnight culture
of the cells in monocyte-conditioned medium substan-
tially increases both receptor expression and eosinophil
functional responses [200].

Proteins.  Various classes of proteins, including immunoglo-
bulins, complement factors and cytokines, possess chemo-
tactic and stimulatory activities for eosinophils.  Using
rosetting techniques, IgG receptors had been demonstrated
on eosinophils as early as 1969 [203].  More recent work
has confirmed that mature eosinophils bear the FcγRII
receptor [19, 23, 204], which is known to bind to multivalent
ligands [205].  Thus, the eosinophil tends to bind to large
surfaces coated with antibody, such as parasites.  IgG
receptor activation causes the generation of LTC4, respira-
tory burst and secretion of granular contents [170, 206].
In addition to FcγRII sites, receptors for IgE have been
described on eosinophils [26, 27], and activation of this
receptor promotes the release of granular proteins and
PAF [24, 25].  However, the IgE receptor on eosinophils
has not been fully characterized and appears not to be
completely identical to FcεRII (CD23), the low-affinity
IgE receptor on lymphocytes, monocytes and other cells
[28].  Finally, monomeric IgA, and in particular secretory
IgA (sIgA), have recently been shown to be potent
eosinophil degranulating agents [32].
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Table 5.  –  Major currently-known eosinophil-activating
factors subdivided according to their chemical nature

Chemical class Mediator

Lipids Platelet-activating factor (PAF)
Leukotriene B4
8S, 15S-DiHETE
5, 15-DiHETE
Eosinophil chemotactic lipid (ECL)
Arachidonic acid

Proteins
Cytokines Granulocyte/macrophage-colony-

stimulating factor (GM-CSF)
Interleukin-2
Interleukin-3
Interleukin-5
MIP-1α
RANTES

Complement factors C5a
Immunoglobulins Immunoglobulin G2

Immunoglobulin A (dimer)
Other Phorbol myristate acetate (PMA)

Ca2+-ionophore A23187 (calcimycin)

DiHETE: dihydroxyeicosatetraenoic acid; MIP1α: macrophage
inflammatory protein-1α.  TPA: tissue polypeptide antigen;
RANTES: regulated upon activation in normal T-cells expressed
and secreted.



In addition, complement proteins, such as C3a and
C5a, (assessed using opsonized parasites, zymosan or
sepharose) have been implicated as eosinophil activators
that facilitate chemotaxis (i.e. C5a) and binding of eosino-
phils to large surfaces, thereby inducing secretion of
granular contents [2, 207–210].  In addition, C5a elabo-
rates protein release, oxygen burst, and lipid prostanoid
generation in human eosinophils [119, 196, 211, 212].

In recent years, an increasing number of cytokines
relevant to eosinophils have been identified (table 6).
For instance, the haematopoietic cytokines, IL-3, IL-5
and GM-CSF promote eosinophilopoiesis in vivo, prolong
eosinophil survival and modulate eosinophil function in
vitro (for review see [213]).  Human peripheral-blood-
derived normodense eosinophils cultured for 7 days with
IL-3 [65] or GM-CSF [3, 66, 67, 214] generate increased
amounts of LTC4 and enhanced cytotoxicity toward
schistosomula when challenged with calcimycin.  Evalu-
ation of the cell density revealed that exposure of eosino-
phils to the cytokines converted them to a hypodense
phenotype.  A similar effect on eosinophil releasability
was observed with IL-5 [75, 215].  FUJISAWA et al. [216]
demonstrated that preincubation of normal eosinophils
with IL-3, IL-5 or GM-CSF also enhanced the sIgA- and
IgG-induced release of EDN.  IL-5 was the most potent
enhancer of immunoglobulin-mediated degranulation and
its effect was apparent within 15 min.  IL-5 also enhances
eosinophil adhesion to endothelial cells [217] and induces
eosinophil chemotaxis in vitro [218] and in vivo [219].
The particular significance of IL-5 for eosinophil-related

inflammation is its selective action on eosinophils but
not on neutrophils [220, 221].

In addition to their priming effect, cytokines elicit a
direct stimulatory action on eosinophils.  For instance,
GM-CSF and IL-5 induced a small but significant release
of EDN.  Whilst IL-2 has no effect on degranulation,
IL-2 together with the lymphocyte chemoattractant factor
(LCF) has been shown to be by far the most potent eosino-
phil chemoattractant [40, 55].  Systemic or intrapleural
administration of IL-2 induced a significant eosinophilia
in the peripheral blood [222–224] and pleural fluid [225],
respectively.  The migratory response of eosinophils is
mediated by the high affinity IL-2 receptor as evidenced
by the molar potency of IL-2 as an eosinophil chemoatt-
ractant and by the ability of monoclonal antibodies to
inhibit IL-2-induced chemotaxis [40].

LCF is a 56 kDa basic glycoprotein, that is elaborated
by CD8+ human T-lymphocytes [226, 227].  LCF utilizes
CD4 as its receptor and stimulates the migration of CD4+
mononuclear cells [226].  As has been mentioned above,
CD4 expression is also detectable on eosinophils obtained
from both normal donors and those with eosinophilia
[53, 55], albeit at appreciably lower levels than found
on T-helper cells.  Since LCF does not stimulate migration
of neutrophils, which lack CD4 expression, the mediator
may contribute to the preferential tissue influx of both
eosinophils and CD4+ lymphocytes in related disease.

Within the past 2 yrs more cytokines with chemotactic
properties, which are members of a structurally-related
low molecular weight platelet factor 4/intercrine/chemokine
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Table 6.  –  Cellular sources and biological actions of eosinophil regulatory cytokines

Cytokine Cell sources Biological action

GM-CSF T-lymphocytes Augments cell viability, adherence, degranulation, phagocytosis, superoxide
Mast cells anion production, leukotriene C4 generation, and cytoxicity
Macrophages Reduces cell density
Epithelial cells Stimulates proteoglycan synthesis
Eosinophils Upregulates CD11b, LFA-1 and PAF receptor expression

IL-1 Many cell types Augments adherence to endothelial cells and degranulation

IL-2 T-lymphocytes Eosinophil chemoattractant

IL-3 T-lymphocytes Augments viability, leukotriene generation and cytotoxicity
Mast cells Reduces cell density
Eosinophils Stimulates proteoglycan synthesis

IL-5 T-lymphocytes Augments viability, leukotriene generation and cytotoxicity
Mast cells Reduces cell density
Eosinophils Stimulates proteoglycans synthesis

Upregulates surface antigen expression

LCF CD8+ T-lymphocytes Eosinophil chemoattractant

TNF-β Various cell types Augments adherence to endothelial cells and weak cellular cytotoxicity

IFN-γ T-lymphocytes Augments viability
Increases cytotoxicity (delayed acting)

IFN-α Various cell types Augments viability (weak)

MIP-1α Lymphocytes Eosinophil attractant
Eosinophils

RANTES T-lymphocytes Potent eosinophil chemoattractant
Platelets Induces ECP and oxygen radical release

TNF: tumour-necrosis factor; IFN: interferon; ECP: eosinophil cationic protein; LCF: lymphocyte chemoattractant factor.  For
further abbreviations see legend to tables 3 and 5.



superfamily, have been identified.  Although previously
recognized as a neutrophil attractant, interleukin-8 (IL-
8), a member of the C-X-C branch of the superfamily,
has been shown to attract and activate eosinophils previously
primed with IL-3, IL-5 or GM-CSF [228].  In addition,
both macrophage inflammatory protein-1α (MIP-1α) and
RANTES, two members of the C-C branch, are potent
eosinophil attractants [229, 230] with a similar efficacy
to the most potent chemotactic myeloid cell agonists,
C5a and PAF.  RANTES also induced secretion of ECP
and oxygen radical release by human eosinophils [230].
Since RANTES also attracts CD45RO+ (memory) T-
cells [231] but no neutrophils, local production of
RANTES by activated T-cells and platelets may account,
in part, for the characteristic inflammatory infiltrate
observed in allergic disease.

Interaction with other cells

The eosinophil is an immunological cell and, as such,
part of a highly complex system which requires a constant
flow of mutual information among other participating
cells.  Multiple mechanism by which eosinophils may
interact with other immunological cells have been suggested
over the past years and will be outlined below (fig. 4).

Mast cells and basophils

Although of different origin, mast cells and basophils
share a number of properties, including not only FcεRI
expression and mediator content but also with respect to
possible co-operation with eosinophils.  For instance, a

number of studies have demonstrated that MBP, ECP
and EPO induce a non-cytolytic release of histamine both
from human basophils [223, 232–238] and mast cells
[239–241].  However, whilst basophils circulate in the
blood and infiltrate tissue during late phase allergic reac-
tions, mast cells are normally distributed throughout
connective tissue [232, 233] and represent the first line
inflammatory cell when exposed to allergen in atopic
disease.

It has been shown that EPO binds to the negatively-
charged mast cell granule to form a complex that retains
toxic activity to bacteria [242] and tumour cells [243]
when supplemented with H2O2 and a halide [242, 244].
Since EPO at high H2O2 concentrations and the EPO/H2O2/
halide complex at lower H2O2 concentrations can initiate
mast cell granule release [245], it is conceivable that
mast cells and eosinophils may act synergistically to im-
prove host defence.  On the other hand, mast cell granu-
les released during inflammation may contribute to the
tissue irritation caused by other eosinophil proteins.  It
has been suggested that mast cells, which normally con-
tain a small amount of granular peroxidase activity [244],
may internalize exogenous EPO using a vesicular trans-
port system and incorporate the peroxidase in their cyto-
plasmic granules [243, 246, 247].

Conversely, human mast cells and basophils may also
counteract the toxic principles derived from eosinophils.
For instance, a number of studies have demonstrated that
human mast cells and basophils rapidly sequester toxic
eosinophil proteins by endocytosis [248–250].  This
observation may provide an explanation for the presence
of MBP or EPO in basophils and mast cells [248, 251].
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Fig. 4.  –  Possible interaction of eosinophils with other immune cells.  MBP: major basic protein; ECP: eosinophil cationic protein; PAF: platelet-
activating factor; IFN: interferon; TNF: tumour necrosis factor; PDGF: platelet-derived growth factor; TGF: transforming growth factor.
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In addition, heparin and related anionic molecules, which
bind histamine within mast cell and basophil granules,
neutralize the toxic properties of MBP, as has been
demonstrated for bronchial epithelial cells [252, 253] and
tumour cells [254].

Finally, mast cell- and basophil-derived mediators, such
as PAF or cytokines, may facilitate the function of
eosinophils [233].  Since mast cells have been implicated
in the immediate reaction in IgE-dependent hyperreactivity,
the release of these mediators may contribute to the patho-
genesis of the delayed infiltration of other inflammatory
cells, such as eosinophils, in late allergic reaction.

Neutrophils and macrophages

Both neutrophils and macrophages may contribute to
eosinophil-dominated inflammatory reaction via release
of eicosanoids and reactive oxygen species and cytokines
[255–258].  Toxic properties by intact neutrophils and
macrophages are considerably increased when eosino-
phil-derived EPO is bound to the target cell surface,
presumably due to a more sufficient utilization of H2O2

by the phagocytes [259].  This has been shown by the
efficacy of macrophages in killing staphylococci [260],
toxoplasma [261], and trypanosoma [262] as well as for
macrophage-mediated cytolysis of neoplastic cells in vitro
[263].

In addition, eosinophils may activate neutrophils through
the release of granular proteins.  A recent study suggests
that MBP is capable of inducing oxygen radical and
lysozyme release by neutrophils in a noncytotoxic concen-
tration-dependent fashion, whereas other eosinophil-
derived granular proteins had no effect [264].  A similar
effect of eosinophil granular proteins has been proposed
for macrophages [265].

Since both neutrophils and macrophages produce a
number of mediators themselves, it is likely that they
in turn are also capable of modulating eosinophil function.
For instance, in vitro studies have demonstrated that
supernatants of alveolar macrophages obtained from active
chronic eosinophilic pneumonia are able to stimulate
eosinophil chemiluminescence [148].

Endothelial cells

Since endothelial cells are located strategically at the
interface between circulating blood cells and tissue, inter-
action with eosinophils are of particular interest with
respect to transmigration from the circulation into the
tissue.  The significance of endothelial cells for eosino-
phils relates to their ability to release cytokines [266–268],
PAF [269, 270], the co-operative synthesis of other lipid
mediators [271], and the expression of adhesion molecules
(for review see [272]).  At the same time, endothelial
cells represent a target for the action of these mediators
[273].

Although the mechanisms facilitating transmigration
of leucocytes are not yet completely understood, increasing
evidence suggests that adhesion molecules expressed both
on native and activated endothelial cells, as well as

leucocytes, play a crucial role in orchestrating this process.
For eosinophils, a number of adhesion molecules of
different families, including leucocyte integrins, the selec-
tins, members of the immunoglobulin family, and certain
carbohydrates, have been demonstrated to mediate the
interaction with vascular endothelial cells.

The endothelial cell expresses ICAM-1, ICAM-2, E-
selectin (originally called endothelial-leucocyte adhesion
molecule-1 (ELAM-1)), P-selectin (also known as GMP-
140) and vascular cell adhesion molecule-1 (VCAM-1)
[274].  ICAM-1, ICAM-2 and VCAM are glycopro-
teins belonging to the immunoglobulin gene superfamily,
while E-selectin and P-selectin are members of the selectin
gene superfamily.

Eosinophils, like neutrophils, monocytes and lympho-
cytes, constitutively or upon activation express adhesion
molecules (see also section on Membrane Receptors and
Surface Markers), which correspond to those on endo-
thelial cells.  For instance, leucocyte function-associated
antigen-1 (LFA-1) (CD11a/CD18) or Mac-1 (CD11b/CD18)
on eosinophils can bind to ICAM-1 (CD54) and ICAM-
2, respectively, on endothelial cells [275–278].  The signi-
ficance of ICAM receptors could be demonstrated in a
primate model of asthma, in which administration of
monoclonal antibody to ICAM-1 attenuated airway
eosinophilia and hyperresponsiveness [47].  However, in
vitro anti-CD18 antibodies only partially inhibited eosino-
phil adherence to the vascular endothelium induced by
PAF [46].  Moreover, in the leucocyte deficiency syndrome,
in which there are genetic deficiences in CD18 and impair-
ments in the abilities of neutrophils to emigrate from the
vasculature into sites of inflammation, both lympho-
cytes and eosinophils can be found in inflammatory lesions
[279], indicating that these two cell types facilitate mecha-
nisms of adherence independent of CD18.

Among the non-CD18-dependent pathways, the interac-
tion between E-selectin (ELAM-1) on activated endothelial
cells and sialoglycoproteins on eosinophils may be of
biological relevance [275–277].  In addition, eosinophils,
like neutrophils and mononuclear cells, express L-selectin
(also known as lectin cell adhesion molecule-1 (LEC.CAM-
1), lectin adhesion molecule-1 (LECAM-1), leucocyte
adhesion molecule-1 (LAM-1), Mel-14, Leu8 or TQ1)
which binds to sialoglycoproteins (glycine cell adhesion
molecule (GlyCAM)) on endothelial cells and which is
involved in the initial phase of adherence and later shed
from the cell surface [35, 276, 280].  However, as for
CD18-dependent pathways, adhesive mechanisms invol-
ving selectins are not selective.  For instance, administra-
tion of anti-E-selectin monoclonal antibody in the primate
model also blocked neutrophil accumulation in acute
antigen-elicited airway inflammation [281].

Recent data suggest that endothelial cells and eosinophils
may interact via a more selective mechanism.  Both nor-
mal and activated eosinophils, but not neutrophils, express
VLA-4 [43, 144, 275–277, 282].  VLA-4 is a β1-integrin
and binds to VCAM-1 as well as to fibronectin on endo-
thelial cells [283].  Blockade of both CD18 and VLA-4
integrin-mediated pathways abolished eosinophil adherence
to TNF-α activated endothelia cells [277], whereas a
combination of antibodies towards ICAM-1, VCAM-1
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and E-selectin caused only partial inhibition [276, 277].
Since VCAM-1 also facilitates the adherence of lympho-
cytes and monocytes, but not neutrophils, the interaction
between VCAM-1 and VLA-4 may represent an impor-
tant specific mechanism for the concomitant recruitment
of eosinophils and mononuclear leucocytes, into sites of
allergic or other immunological reactions.

This conclusion was further supported by findings
which demonstrated that VCAM-1 expression on endothelial
cells is increased by IL-4, either alone [144] or in concert
with TNF or IL-5 [284–286].  In addition, IL-4, which
is also involved in the regulation of IgE synthesis, induced
a VLA-4/VCAM-1-dependent adherence of eosinophils
and basophils to endothelium, but not neutrophils [144].
In limited studies, augmented expression of endothelial
VCAM-1, E-selectin, and ICAM-1 have been found in
tissue sites of late-phase reactions [278, 286], and other
tissue eosinophilia-related reactions [287, 288].

Epithelial cells

Eosinophils adhere to and transmigrate through epithelial
barriers in asthma to reach the bronchoalveolar space
[289, 290].  In addition to its function as a surface protector
and cover, epithelial tissue represents a metabolically
active secreting tissue, which may actively interact with
inflammatory cells, such as eosinophils.  Human airway
epithelial cells produce GM-CSF [291–293] as well as
PAF, PGE2, PGF2a, [294] and 15-lipoxygenase pathway-
derived eicosanoids [295], which may influence eosino-
phil function after arrival in the bronchoalveolar space.
This function, however, may itself represent a target for
anti-inflammatory drugs, such as corticosteroids [296].
Furthermore, as with vascular endothelial cells, airway
epithelium expresses adhesion molecules, such as ICAM-
1 [297, 298], and adherence of eosinophils to respiratory
epithelium can be partially blocked by monoclonal anti-
body towards ICAM-1 [47].

Platelets

Since the discovery that platelets bear IgE receptors
and can be activated during IgE-dependent events [299],
the platelet is regarded as another accessory cell involved
in allergic disease.  Platelets can undergo chemotaxis,
and phagocytosis and are able to release a number of pro-
inflammatory mediators [300].  Data demonstrating the
role of platelets derive from studies which show that, in
a rabbit model, platelet depletion using a selective anti-
platelet antiserum prevented antigen-induced broncho-
spasm [300, 301].  In addition, in guinea-pig, depletion
of platelets virtually ablated bronchial hyperreactivity and
eosinophil infiltration following exposure to PAF [302],
indicating that platelets may be involved in eosinophil
recruitment.  Two potent eosinophil chemoattractants,
PAF [173] and RANTES [229], are produced by platelets
and may be involved in platelet-dependent eosinophil
migration.  Further evidence for the role of platelets in
allergic inflammation stems from experiments which show
that levels of granular platelet products, such as platelet

factor-4 (PF-4) and β-thromboglobulin (β-TG), are raised
in asthmatics after antigen challenge and correlated with
elevations of eosinophil granule products [303, 304].  On
the other hand, eosinophil products, such as MBP and
EPO, have been shown to activate platelets [305].

Lymphocytes

Eosinophils and lymphocytes are recruited concomitantly
into inflammatory sites [290, 306–309], suggesting a link
between both cell types.  The role of lymphocytes in
relation to eosinophils is mainly determined by their pro-
duction and release of cytokines.  Lymphocytes are the
source of the two most potent eosinophil chemoattractants
known to date, LCF [226] and IL-2 [40, 309].  In addi-
tion, cytokines of the Th2 subtype, which is predomin-
antly found in eosinophil-related conditions [310, 311],
including IL-3, IL-5, and GM-CSF, probably promote
eosinophilopoiesis, eosinophil recruitment, prolong eosino-
phil survival, and enhance eosinophil function [4, 18, 57,
215, 216, 220, 221, 228].  In addition, the products of
recruited lymphocytes are likely to affect the function
and subsequent recruitment of additional eosinophils and
lymphocytes.  For instance, IL-4 elaborated by Th2 cells
effectively promotes VCAM-1 expression on endothelial
cells [284, 285], which would further facilitate both
recruitment and activation of eosinophils and lympho-
cytes (see above).

Fibroblasts

Several studies have demonstrated that the function,
survival and physical properties of eosinophils are influ-
enced ex vivo by incubation with monolayers of murine
fibroblasts supplemented with certain cytokines [65].
These conditions not only promoted the survival of eosino-
phils, but also caused eosinophils to become hypodense
and augmented eosinophil effector functions, such as
lipid mediator secretion or antibody-dependent cytotoxi-
city of helminthic larvae.  More recently, it has been
shown that human lung-derived fibroblasts alone can
promote eosinophil survival in vitro and that GM-CSF
elaborated by these cells may be responsible for this
effect [312].

On the other hand, since tissue fibrosis is associated
with certain hypereosinophilic syndromes, it had been
argued that eosinophils may produce factors which induce
and maintain fibrogenesis.  This view is supported by
findings which demonstrate that extracts obtained from
human and guinea-pig eosinophils release mitogens for
fibroblasts [313], and stimulate fibroblast deoxyribo-
nucleic acid (DNA) synthesis [314].

Recruitment of eosinophils

General mechanisms

Adhesion of circulating leucocytes to vascular endothe-
lium is a crucial process for effective host defence against
infection and injury.  In order to accumulate in tissues,
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circulating leucocytes must adhere to the endothelium
lining, penetrate the vessel wall, and migrate to the site
of tissue irritation.  Acute bronchopulmonary inflammation
involves a myriad of cellular and humoral mechanisms,
which promote increases in vascular permeability, changes
in blood flow, mobilization, accumulation and activation
of leucocytes, all of which may have some bearing for
eosinophils during emigration into tissue.  On a cellular

level, eosinophil recruitment involves specific and
nonspecific adhesive interactions with vascular endo-
thelial cells, penetration of the blood vessel wall, chemo-
taxis and accumulation at the site of allergic inflammation.

In recent years, several studies have led to a detailed
insight into the possible mechanisms underlying eosinophil
recruitment from the circulation into the tissue (fig. 5).
This process can be divided arbitrarily into a sequence
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of six different, though partly overlapping, stages (fig.
5a-h):
1. Eosinophil emigration may be initiated by random
contact of the cell with endothelium, which is most like-
ly to occur in capillary vessels due to their small lumen
(fig. 5a).
2. When in the vicinity of an inflammatory site, L-
selectin receptors on naive nonactivated eosinophils may
interact with locally-activated capillary endothelial cells
bearing certain carbohydrate counter structures (possibly
E-selectin) [315–317] (fig. 5b).  Hence, L-selectin may
function as an anchor, mediating an initial reversible
adhesion.  As a result of this early interaction between
eosinophils and endothelial cells and the shear forces due
to blood flow, the cells role or skid along the endothe-
lial lining (rolling), thereby slowing the cellular flow
possibly to provide the time required for cellular activa-
tion by locally-released mediators (fig. 5c).
3. Cytokines diffusing from the inflammatory site and
through to the endothelial barrier, as well as cytokines
and lipid mediators released by perivascular lymphocytes
and macrophages and endothelial cells themselves, may
now activate the eosinophil, resulting in both an increase
in affinity and expression of adhesion molecules on the
eosinophil surface (fig. 5d and e).  Among the adhesion
receptors involved are the β1-integrin VLA-4 (CDw49d/
CD29), which binds to VCAM-1 on endothelial cells,
and β2-integrin receptors LFA-1 (CD11a/CD18), Mac-1
(CD11b/CD18), and p150.95 (CD11c/CD18), which bind
to ICAM-1.  These and perhaps other events, in combina-
tion with endothelial activation and enhancement or de
novo expression of adhesion molecules, are followed by
a firm nonspecific (fig. 5f) and a more specific (fig. 5g)
eosinophil-endothelial adhesion ("sticking").
4. Chemoattractants (IL-2, IL-5, RANTES, PAF) diffusing
from the vicinity of the inflammatory focus may now
induce a migratory response in eosinophils (fig. 5g) which

subsequently initiates transendothelial migration ("diape-
desis"), during which time the leucocyte emigrates between
endothelial cells and enters the extracellular space (fig.
5h).  In order to facilitate transmigration, the initial
adhesive interactions need, in part, to be loosened, which
may be achieved by down-regulation or shedding of adhe-
sion receptors.  Several recent studies have confirmed
that eosinophils shed L-selectin during migration into
the bronchial tissue in vivo [35, 36, 43, 318, 319], or
across an endothelial cell monolayer in vitro [35].
5. The transmigrated cell now moves along a chemotactic
gradient through the inflammatory microenvironment
towards the inflammatory focus.  In this phase, direct
migration may be guided not only by increasing concentra-
tions of chemotactic factors but also through adhesive
interactions between eosinophil integrins and tissue
extracellular proteins (for review see [272]).
6. As the eosinophil approaches the inflammatory focus,
the cell is likely to get exposed to a mixture of increasing
concentrations of activating lipid mediators and locally
synthesized cytokines, lipid mediators, and neuropeptides.
The spectrum and ratio of secreted mediators may deter-
mine the degree of eosinophil activation.  Since some of
the mediators at low concentrations preferentially prime,
and at higher concentrations activate, eosinophil effector
functioning [72, 320, 321], it is likely that, during the
final approach to the inflammatory focus, the cells
increasingly perform their cytotoxic function via release
of basic proteins and generation of reactive oxygen species
(fig. 6).  At the same time, upon arrival at the inflamma-
tory site, i.e. in the airway mucosa, the eosinophil may
become immobilized and hyporeactive as a result of cell
desensitization due to chemotactic factors, such as PAF
[163–168, 318].
7. In the final stage, continued exposure of tissue or
intraluminal eosinophils to cytokines released during
ongoing inflammation by nearby tissue-dwelling cells
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Fig. 6.  –  Putative sequence of events during eosinophil recruitment from the blood, approach of inflammatory focus and fate of the cells in the
setting of asthmatic bronchial inflammation.
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[138, 163], endobronchial leucocytes or bronchial epithe-
lial cells, however, may enhance survival and reprime
the cell, enabling the eosinophil to regain its proinflamma-
tory properties (paper submitted), namely the release of
granule proteins, lipid mediators and reactive oxygen
species.

More selective mechanisms

Since β2-integrins are expressed on all leucocyte subsets,
it is unlikely that they account for the characteristic in-
flammatory tissue infiltration observed in eosinophil-
related disease.  Therefore, in view of possible therapeutic
approaches for these diseases, it is of great interest to
understand the relative selective mechanism of eosinophil
recruitment from the vasculature.  To date, two principal
mechanisms appear to be operative.  Firstly, as outlined
above (section on Membrane Receptor), the β1-integrin
VLA-4 (CD49d/CD29) has only been detected on eosino-
phils, basophils, lymphocytes, monocytes and dentritic
cells but not on neutrophils [276, 278, 282–284], sugges-
ting that interaction between VLA-4/VCAM-1 may be
involved in more selective eosinophil and basophil
recruitment.  In addition, it has been shown that IL-4
induces VCAM-1 expression on endothelium, leading to
the selective adhesion of human eosinophils and basophils
[144, 213].  Hence, VLA-4 expression on eosinophils
and binding to endothelial VCAM-1 may account for at
least one mechanism by which eosinophils and basophils
selectively migrate into inflamed tissue (fig. 5g).

A second possibility for the selective recruitment of
eosinophils could be secretion of specific chemoattractants.
Possible candidates mediating this mechanism are IL-2,
IL-5 and LCF.  Whilst IL-5 is only active on eosinophils,
IL-2 and LCF also cause concomitant recruitment of
CD4+ lymphocytes [322].  However, it is likely that
other, as yet unknown, mechanism may be involved.

In view of this rather complex framework of interactions
which appear to operate in vivo, one may ask whether it
is absolutely necessary to hypothesize an absolutely
specific chemoattractant or adhesion molecule for every
single cell type.  Selective recruitment of eosinophils can
be sufficiently explained by the combination of several
relatively selective recruitment events generating the
conditions leading to selective eosinophil tissue infiltration.
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