Hypoxic burden to guide CPAP treatment allocation in patients with obstructive sleep apnoea: a post hoc study of the ISAACC trial

Lucía Pinilla1,2,3,17, Neda Esmaeili3,4,17, Gonzalo Labarca3, Miguel Ángel Martínez-Garcia2,5, Gerard Torres4,2, Esther Gracia-Lavedan4,6, Olga Mínguez6, Dolores Martínez6, Jorge Abad2,7, María José Masedu2,8, Olga Mediano3,9, Carmen Muñoz10, Valèntín Cabriada11, Joaquín Duran-Cantolla2,12, Mercè Mayos2,13, Ramón Coloma14, Josep Maria Montserrat2,15, Mónica de la Peña16, Wen-Hsin Hu3, Ludovico Messineo3, Mohammadreza Sehhati4, Andrew Wellman3, Susan Redline3, Scott Sands3, Ferran Barbé2,6, Manuel Sánchez-de-la-Torre1,2,18 and Ali Azarbarzin3,18

1Group of Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa María, University of Lleida, IRBLleida, Lleida, Spain. 2Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain. 3Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA. 4Bioelectric and Biomedical Engineering Department, School of Advanced Technologies in Medicine, Isfahan, Iran. 5Pneumology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain. 6Group of Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa María, University of Lleida, IRBLleida, Lleida, Spain. 7Pneumology Department, University Hospital Germans Trias i Pujol, Badalona, Spain. 8Pneumology Department, University Hospital Parc Taulí, Autonomous University of Barcelona, Sabadell, Spain. 9Pneumology Department, University Hospital of Guadalajara, Guadalajara, Spain. 10Pneumology Department, University Hospital of Burgos, Burgos, Spain. 11Pneumology Department, University Hospital of Cruces, Bizkaia, Spain. 12Biarabá Health Research Institute, University Hospital of Araba, Vitoria, Spain. 13Sleep Unit, Pneumology Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain. 14Pneumology Department, University Hospital of Albacete, Albacete, Spain. 15Pneumology Department, Clinic Hospital, Barcelona, Spain. 16University Hospital Son Espases, Research Institute of Palma, Palma de Mallorca, Spain. 17L. Pinilla and N. Esmaeili are co-first authors. 18M. Sánchez-de-la-Torre and A. Azarbarzin contributed equally to this article as lead authors and supervised the work.

Corresponding author: Manuel Sánchez-de-la-Torre (sanchezdelatorre@gmail.com)

Shareable abstract (@ERSpublications)
Hypoxic burden stands out as an obstructive sleep apnoea severity metric with potential clinical utility to identify patients most likely to benefit from continuous positive airway pressure treatment for secondary cardiovascular prevention

This extracted version can be shared freely online.

Copyright ©The authors 2023.
This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org
This article has an editorial commentary: https://doi.org/10.1183/13993003.01741-2023

Background
Hypoxic burden (HB) has emerged as a strong predictor of cardiovascular risk in obstructive sleep apnoea (OSA). We aimed to assess the potential of HB to predict the cardiovascular benefit of treating OSA with continuous positive airway pressure (CPAP).

Methods
This was a post hoc analysis of the ISAACC trial (ClinicalTrials.gov: NCT01335087) including non-sleepy patients with acute coronary syndrome (ACS) diagnosed with OSA (apnoea–hypopnoea index \(\geq 15 \) events \(\cdot \)h\(^{-1} \)) by respiratory polygraphy. Patients were randomised to CPAP or usual care and followed for a minimum of 1 year. HB was calculated as the total area under all automatically identified desaturations divided by total sleep time. Patients were categorised as having high or low baseline HB according to the median value (73.1%min\(\cdot \)h\(^{-1} \)). Multivariable Cox regression models were used to assess whether the effect of CPAP on the incidence of cardiovascular outcomes was dependent on the baseline HB level.

Results
The population (362 patients assigned to CPAP and 365 patients assigned to usual care) was middle-aged (mean age 59.7 years), overweight/obese and mostly male (84.5%). A significant interaction was found between the treatment arm and the HB categories. In the high HB group, CPAP treatment was...
associated with a significant reduction in the incidence of cardiovascular events (HR 0.57, 95% CI 0.34–0.96). In the low HB group, CPAP-treated patients exhibited a trend toward a higher risk of cardiovascular outcomes than those receiving usual care (HR 1.33, 95% CI 0.79–2.25). The differential effect of the treatment depending on the baseline HB level followed a dose–response relationship.

Conclusion In non-sleepy ACS patients with OSA, high HB levels were associated with a long-term protective effect of CPAP on cardiovascular prognosis.