The ERS PROFILE.net Clinical Research Collaboration is dedicated to the set-up of an academic network to enhance imaging-based management of progressive pulmonary fibrosis

Julien Guiot¹ and Simon L.F. Walsh²,³

¹Respiratory Medicine Department, University Hospital of Liège, Liège, Belgium. ²National Heart and Lung Institute, Imperial College London, London, UK. ³Royal Brompton Hospital, London, UK.

Corresponding author: Julien Guiot (j.guiot@chuliege.be)

Shareable abstract (@ERSpublications)
AI has the potential to revolutionise the way we diagnose and treat patients suffering from fibrotic ILDs. HRCT analysis and abnormalities quantification can facilitate diagnosis and monitoring of treatment response to assist clinicians. https://bit.ly/3rKI2Iq

Cite this article as: Guiot J, Walsh SLF. The ERS PROFILE.net Clinical Research Collaboration is dedicated to the set-up of an academic network to enhance imaging-based management of progressive pulmonary fibrosis. Eur Respir J 2023; 62: 2300577 [DOI: 10.1183/13993003.00577-2023].

This extracted version can be shared freely online.

Interstitial lung disease (ILD) is a heterogeneous group of pulmonary disorders, characterised by diffuse parenchymal lung infiltration. Some ILD patients can develop a progressive fibrosing phenotype characterised by worsening fibrotic changes, decline in lung function over time, worsening symptoms and quality of life, and early mortality. Patients with this inexorable progression of disease are referred to as having progressive pulmonary fibrosis (PPF) [1]. This disease behaviour is associated with an autonomous progressive fibrotic evolution due to repetitive epithelial microinjuries, over-expression of fibrogenic growth factors, fibroblast proliferation and active collagen accumulation leading to progressive lung dysfunction [2, 3]. Although antifibrotic therapy does not stop progression, it slows the forced vital capacity (FVC) decline, making prompt identification of patients at high clinical risk of PPF crucial if lung function is to be preserved for as long as possible.