Age-related changes in plasma biomarkers and their association with mortality in COVID-19


Methods

464 COVID-19 patients admitted to the general ward stratified by age

<50 years
≥50–<60 years
≥60–<70 years
≥70 years

Validation in intensive care unit (n=157) and external (n=196) cohort

43 plasma biomarkers reflecting key pathophysiological domains

Coagulation and endothelium
Systemic inflammation and organ damage
Cytokines
Chemokines

Results

Mediation analysis

Endothelial cell and coagulation activation markers

Soluble TNF-R1
Soluble TREM-1
Soluble thrombomodulin

GRAPHICAL ABSTRACT Overview of the study findings. TNF-R1: tumour necrosis factor receptor 1; TREM-1: triggering receptor expressed on myeloid cells 1. Figure partially created with BioRender.com.

Link to published version: https://doi.org/10.1183/13993003.00011-2023 Eur Respir J 2023; 62: 2300011
Age-related changes in plasma biomarkers and their association with mortality in COVID-19

Erik H.A. Michels 1, Brent Appelman 1, Justin de Brabander 2, Rombout B.E. van Amstel 2, Ossoul Chouchane 1, Christine C.A. van Linge 1, Alex R. Schuurman 1, Tom D.Y. Reijnders 1, Titia A.L. Sulzer 1, Augustijn M. Klarenbeek 1, Renée A. Douma 3, Amsterdam UMC COVID-19 Biobank Study Group, Lieuwe D.J. Bos 2, W. Joost Wiersinga 1,4, Hessel Peters-Sengers 1,5 and Tom van der Poll 1,4

1Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine (CEMM), Amsterdam, The Netherlands. 2Amsterdam UMC, location University of Amsterdam, Department of Intensive Care Medicine, Amsterdam, The Netherlands. 3Flevo Hospital, Department of Internal Medicine, Almere, The Netherlands. 4Amsterdam UMC, location University of Amsterdam, Division of Infectious Diseases, Amsterdam, The Netherlands. 5Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands.

Corresponding author: Erik H.A. Michels (e.h.michels@amsterdamumc.nl)

Shareable abstract (@ERSpublications)
In COVID-19, specific ageing-related alterations in the host response likely contribute to the increased mortality in older patients. Evidence is provided for potential age-specific immunomodulatory targets across four pathophysiological COVID-19 domains. https://bit.ly/3mIMt4l


This extracted version can be shared freely online.

Abstract
Background Coronavirus disease 2019 (COVID-19)-induced mortality occurs predominantly in older patients. Several immunomodulating therapies seem less beneficial in these patients. The biological substrate behind these observations is unknown. The aim of this study was to obtain insight into the association between ageing, the host response and mortality in patients with COVID-19.

Methods We determined 43 biomarkers reflective of alterations in four pathophysiological domains: endothelial cell and coagulation activation, inflammation and organ damage, and cytokine and chemokine release. We used mediation analysis to associate ageing-driven alterations in the host response with 30-day mortality. Biomarkers associated with both ageing and mortality were validated in an intensive care unit and external cohort.

Results 464 general ward patients with COVID-19 were stratified according to age decades. Increasing age was an independent risk factor for 30-day mortality. Ageing was associated with alterations in each of the host response domains, characterised by greater activation of the endothelium and coagulation system and stronger elevation of inflammation and organ damage markers, which was independent of an increase in age-related comorbidities. Soluble tumour necrosis factor receptor 1, soluble triggering receptor expressed on myeloid cells 1 and soluble thrombomodulin showed the strongest correlation with ageing and explained part of the ageing-driven increase in 30-day mortality (proportion mediated: 13.0%, 12.9% and 12.6%, respectively).

Conclusions Ageing is associated with a strong and broad modification of the host response to COVID-19, and specific immune changes likely contribute to increased mortality in older patients. These results may provide insight into potential age-specific immunomodulatory targets in COVID-19.