Monocyte migration profiles define disease severity in acute COVID-19 and unique features of long COVID

Nicholas A. Scott 1,13, Laurence Pearmain 2,3,4,13, Sean B. Knight1,5, Oliver Brand1, David J. Morgan 1, Christopher Jagger1, Sarah Harbach1, Saba Khan1, Halima A. Shuwa1, Miriam Franklin1, Verena Kästele1, Thomas Williams1, Ian Prise1, Flora A. McClure1, Pamela Hackney6, Lara Smith6, Madhvi Menon7, Joanne E. Konkel3, Craig Lawless4, James Wilson7,8, Alexander G. Mathioudakis2,9, Stefan C. Stanel2,9, Andrew Ustianowski1,7, Gabriella Lindergard7, Seema Brij10, Nawar Diar Bakerly 5, Paul Dark5, Christopher Brightling11, Pilar Rivera-Ortega2, Graham M. Lord4, Alex Horsley9, CIRCO, Karen Piper Hanley3,4, Timothy Felton9, Angela Simpson9, John R. Grainger1,14, Tracy Hussell1,14 and Elizabeth R. Mann1,12,14

1Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK. 2North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK. 3Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK. 4Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK. 5Department of Respiratory Medicine, Salford Royal NHS Foundation Trust, Manchester, UK. 6Research Innovation, Manchester University NHS Foundation Trust, Manchester, UK. 5Department of Microbiology, Salford Royal NHS Foundation Trust, Manchester, UK. 7Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, Manchester, UK. 8Department of Respiratory Medicine, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK. 9Department of Respiratory Sciences, Leicester NIHR BRC, University of Leicester, Leicester, UK. 10Department of Respiratory Sciences, Leicester NIHR BRC, University of Leicester, Leicester, UK. 11Maternal and Fetal Health Centre, Division of Developmental Biology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK. 12Equal contribution. 13Joint senior authors.

Corresponding author: Elizabeth R. Mann (elizabeth.mann@manchester.ac.uk)

Shareable abstract (@ERSpublications)
Immune dysfunction is a key factor in acute COVID-19 pathophysiology, with monocyte abnormalities sustained during convalescence for at least 9 months following hospital discharge and corresponding to specific long COVID symptoms https://bit.ly/3xEIY0H

This single-page version can be shared freely online.
chemokine ligand 16 (CXCL16) (p<0.05), which is abundantly expressed in the lung. Monocyte CXCR6 and lung CXCL16 were heightened in patients with progressive fibrosing interstitial lung disease (p<0.001), confirming a role for the CXCR6-CXCL16 axis in ongoing lung injury. Conversely, monocytes from long COVID patients with ongoing fatigue exhibited a sustained reduction of the prostaglandin-generating enzyme cyclooxygenase 2 (p<0.01) and CXCR2 expression (p<0.05). These monocyte changes were not present in respiratory syncytial virus or influenza A convalescence.

Conclusions Our data define unique monocyte signatures that define subgroups of long COVID patients, indicating a key role for monocyte migration in COVID-19 pathophysiology. Targeting these pathways may provide novel therapeutic opportunities in COVID-19 patients with persistent morbidity.