Prolonged higher dose methylprednisolone versus conventional dexamethasone in COVID-19 pneumonia: a randomised controlled trial (MEDEAS)

Francesco Salton 1,2, Paola Confalonieri 1,2, Stefano Centanni 3, Michele Mondoni 3, Nicola Petrosillo 4, Paolo Bonfanti 5,6, Giuseppe Lapadula 5,6, Donato Lacedonia 7, Antonio Voza 8, Nicoletta Carpene 9, Marcella Montico 1, Nicolò Reccardini 1,2, Gianfranco Umberto Meduri 10, Barbara Ruaro 1,2, MEDEAS Collaborative Group 11 and Marco Confalonieri 1,2

1 Department of Pulmonology, University Hospital of Cattinara, Trieste, Italy. 2 Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy. 3 Department of Health Sciences – Università degli Studi di Milano, Respiratory Unit ASST Santi Paolo e Carlo, Milan, Italy. 4 Infection Prevention and Control – Infectious Disease Service, Foundation University Hospital Campus Bio-Medico, Rome, Italy. 5 Infectious Diseases Unit, ASST Monza, San Gerardo Hospital, Monza, Italy. 6 School of Medicine, University of Milan-Bicocca, Milan, Italy. 7 Department of Medical and Surgical Sciences – University of Foggia, Policlinico Riuniti, Foggia, Italy. 8 Emergency Medicine Unit, IRCCS Humanitas Research Hospital, Milan, Italy. 9 Pulmonary, Cardiac-Thoracic and Vascular Department, University Hospital of Pisa, Pisa, Italy. 10 Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Tennessee Health Science Center, Memphis, TN, USA. 11 A full list of the MEDEAS Collaborative Group members and their affiliations can be found in the Acknowledgements section.

Corresponding author: Francesco Salton (francesco.salton@asugi.sanita.fvg.it)

Shareable abstract (@ERSpublications)

Infusive methylprednisolone did not show major advantages over conventional dexamethasone in severe COVID-19 pneumonia, confirming the favourable drug class effect of prolonged, low-dose glucocorticoids postulated by current guidelines https://bit.ly/3zxSwMn

This single-page version can be shared freely online.

Abstract

Background Dysregulated systemic inflammation is the primary driver of mortality in severe coronavirus disease 2019 (COVID-19) pneumonia. Current guidelines favour a 7–10-day course of any glucocorticoid equivalent to dexamethasone 6 mg daily. A comparative randomised controlled trial (RCT) with a higher dose and a longer duration of intervention was lacking.

Methods We conducted a multicentre, open-label RCT to investigate methylprednisolone 80 mg as a continuous daily infusion for 8 days followed by slow tapering versus dexamethasone 6 mg once daily for up to 10 days in adult patients with COVID-19 pneumonia requiring oxygen or noninvasive respiratory support. The primary outcome was reduction in 28-day mortality. Secondary outcomes were mechanical ventilation-free days at 28 days, need for intensive care unit (ICU) referral, length of hospitalisation, need for tracheostomy, and changes in C-reactive protein (CRP) levels, arterial oxygen tension/inspiratory oxygen fraction (P\text{aO}_2/F\text{IO}_2) ratio and World Health Organization Clinical Progression Scale at days 3, 7 and 14.

Results 677 randomised patients were included. Findings are reported as methylprednisolone (n=337) versus dexamethasone (n=340). By day 28, there were no significant differences in mortality (35 (10.4%) versus 41 (12.1%); p=0.49) nor in median mechanical ventilation-free days (median (interquartile range (IQR)) 23 (14) versus 24 (16) days; p=0.49). ICU referral was necessary in 41 (12.2%) versus 45 (13.2%) (p=0.68) and tracheostomy in 8 (2.4%) versus 9 (2.6%) (p=0.82). Survivors in the methylprednisolone group required a longer median (IQR) hospitalisation (15 (11) versus 14 (11) days; p=0.005) and experienced an improvement in CRP levels, but not in P\text{aO}_2/F\text{IO}_2 ratio, at days 7 and 14. There were no differences in disease progression at the prespecified time-points.
Conclusion Prolonged, higher dose methylprednisolone did not reduce mortality at 28 days compared with conventional dexamethasone in COVID-19 pneumonia.