



## Development of a tool to detect small airways dysfunction in asthma clinical practice

Janwillem Kocks<sup>1,2,3,4</sup>, Thys van der Molen<sup>1,2</sup>, Jaco Voorham<sup>5</sup>, Simonetta Baldi<sup>6</sup>, Maarten van den Berge<sup>2,4</sup>, Chris Brightling<sup>6</sup>, Leonardo M. Fabbri <sup>107</sup>, Monica Kraft<sup>8</sup>, Gabriele Nicolini<sup>9</sup>, Alberto Papi <sup>107</sup>, Klaus F. Rabe<sup>10</sup>, Salman Siddiqui<sup>11</sup>, Dave Singh<sup>12</sup>, Judith Vonk <sup>102,13</sup>, Marika Leving<sup>1</sup> and Bertine Flokstra-de Blok <sup>1,2,14</sup>

<sup>1</sup>General Practitioners Research Institute, Groningen, The Netherlands. <sup>2</sup>University of Groningen, University Medical Center Groningen, Groningen Research Institute Asthma and COPD (GRIAC), Groningen, The Netherlands. <sup>3</sup>Observational and Pragmatic Research Institute, Singapore. <sup>4</sup>University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands. <sup>5</sup>DTIRS – Data to Insights Research Solutions, Lisboa, Portugal. <sup>6</sup>Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK. <sup>7</sup>Respiratory Medicine, Department of Translational Medicine, University of Arizona Health Sciences, Tucson, AZ, USA. <sup>9</sup>Department of Global Medical Affairs, Chiesi Farmaceutici S.p.A., Parma, Italy. <sup>10</sup>LungenClinic Grosshansdorf and Department of Medicine, Christian Albrechts University, Member of the German Center for Lung Research (DZL), Kiel, Germany. <sup>11</sup>National Heart and Lung institute (NHLI), Imperial College, London, UK. <sup>12</sup>Centre for Respiratory Medicine and Allergy, Manchester University NHS Foundation Hospital Trust, University of Manchester, Manchester, UK. <sup>13</sup>University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands. <sup>14</sup>University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, The Netherlands.

Corresponding author: Bertine Flokstra-de Blok (bertine@gpri.nl)



Shareable abstract (@ERSpublications)

Asthma patients with small airways dysfunction (SAD) could be identified reasonably well by asking about wheezing at rest and a few patient characteristics, but accuracy to predict SAD increases considerably when using lung function tests http://bit.ly/3TGEoHC

**Cite this article as:** Kocks J, van der Molen T, Voorham J, *et al.* Development of a tool to detect small airways dysfunction in asthma clinical practice. *Eur Respir J* 2023; 61: 2200558 [DOI: 10.1183/ 13993003.00558-2022].

This single-page version can be shared freely online.

Copyright ©The authors 2023.

This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org

This article has an editorial commentary: https://doi.org/10.1183/ 13993003.02307-2022

Received: 15 March 2022 Accepted: 31 Oct 2022



Abstract

*Background* Small airways dysfunction (SAD) in asthma is difficult to measure and a gold standard is lacking. The aim of this study was to develop a simple tool including items of the Small Airways Dysfunction Tool (SADT) questionnaire, basic patient characteristics and respiratory tests available depending on the clinical setting to predict SAD in asthma.

*Methods* This study was based on the data of the multinational ATLANTIS (Assessment of Small Airways Involvement in Asthma) study including the earlier developed SADT questionnaire. Key SADT items together with clinical information were now used to build logistic regression models to predict SAD group (less likely or more likely to have SAD). Diagnostic ability of the models was expressed as area under the receiver operating characteristic curve (AUC) and positive likelihood ratio (LR+).

*Results* SADT item 8, "I sometimes wheeze when I am sitting or lying quietly", and the patient characteristics age, age at asthma diagnosis and body mass index could reasonably well detect SAD (AUC 0.74, LR+ 2.3). The diagnostic ability increased by adding spirometry (percentage predicted forced expiratory volume in 1 s: AUC 0.87, LR+ 5.0) and oscillometry (resistance difference between 5 and 20 Hz and reactance area: AUC 0.96, LR+ 12.8).

*Conclusions* If access to respiratory tests is limited (*e.g.* primary care in many countries), patients with SAD could reasonably well be identified by asking about wheezing at rest and a few patient characteristics. In (advanced) hospital settings patients with SAD could be identified with considerably higher accuracy using spirometry and oscillometry.