

Comment on: Intrapulmonary shunt and alveolar dead space in a cohort of patients with acute COVID-19 pneumonitis and early recovery

Maximilian Ackermann ^{1,2}, Paul Tafforeau³, Joseph Brunet³, Jan C. Kamp ^{4,5}, Christopher Werlein⁶, Mark P. Kühnel^{5,6}, Joseph Jacob ^{7,8}, Claire L. Walsh⁹, Peter D. Lee ⁹, Tobias Welte ^{4,5} and Danny D. Jonigk^{5,10}

¹Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Witten, Germany. ²Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany. ³European Synchrotron Radiation Facility, Grenoble, France. ⁴Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany. ⁵Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany. ⁶Institute of Pathology, Hannover Medical School, Hannover, Germany. ⁷Centre for Medical Image Computing, University College London, London, UK. ⁸Department of Radiology, University College London Hospitals NHS Foundation Trust, London, UK. ⁹Department of Mechanical Engineering, University College London, London, UK. ¹⁰Institute of Pathology, University Clinics of RWTH University, Aachen, Germany.

Corresponding author: Maximilian Ackermann (maximilian.ackermann@uni-mainz.de)

Check for updates	Shareable abstract (@ERSpublications) A compelling explanation for mosaic-like micro-ischaemia in the severe pathology of COVID-19 pneumonitis, which reflects the vasculopathy affecting the secondary lobule and the interlobular septae http://bit.ly/3GwMkII
	Cite this article as: Ackermann M, Tafforeau P, Brunet J, <i>et al.</i> Comment on: Intrapulmonary shunt and alveolar dead space in a cohort of patients with acute COVID-19 pneumonitis and early recovery. <i>Eur Respir J</i> 2023; 61: 2202121 [DOI: 10.1183/13993003.02121-2022].
	This single-page version can be shared freely online.
Copyright ©The authors 2023. This version is distributed under the terms of the Creative Commons Attribution Non- Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org Received: 8 Nov 2022 Accepted: 13 Nov 2022	<i>To the Editor</i> : With the greatest interest we read the paper by HARBUT <i>et al.</i> [1] describing the role of intrapulmonary shunting and alveolar dead space in patients with acute COVID-19 pneumonitis. We are grateful for them sharing their valuable functional blood and alveolar gas exchange data, pointing out a significant alveolar dead space of nearly 30% in recovered COVID-19 patients, suggesting a persistent pulmonary vascular pathology. Although COVID-19 related hypoxaemia is characterised by preserved oxygen saturation, a ventilation–perfusion mismatch and increased alveolar ventilation/perfusion ratio heterogeneity, the underlying morphological evidence of this physiological enigma has not been fully understood.

