

Dynamic contrast enhanced MRI for the evaluation of lung perfusion in idiopathic pulmonary fibrosis

Luis A. Torres ¹, Kristine E. Lee ², Gregory P. Barton ¹, Andrew D. Hahn ¹, Nathan Sandbo ³, Mark L. Schiebler ^{3,4} and Sean B. Fain ^{1,4,5,6}

¹Dept of Medical Physics, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA. ²Dept of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA. ³Dept of Medicine, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA. ⁴Dept of Radiology, School of Medicine and Public Health, University of Wisconsin – Madison, WI, USA. ⁵Dept of Biomedical Engineering, College of Engineering, University of Wisconsin – Madison, WI, USA. ⁶Dept of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.

Corresponding author: Sean B. Fain (sean-fain@uiowa.edu)

Shareable abstract (@ERSpublications) DCE-MRI quantitative perfusion and semiquantitative transit time metrics identified regional deficits in IPF lung disease relative to healthy control subjects and in IPF progression https://bit.ly/ 3swKH6r

Cite this article as: Torres LA, Lee KE, Barton GP, *et al.* Dynamic contrast enhanced MRI for the evaluation of lung perfusion in idiopathic pulmonary fibrosis. *Eur Respir J* 2022; 60: 2102058 [DOI: 10.1183/13993003.02058-2021].

This single-page version can be shared freely online.

Abstract

Background The objective of this work was to apply quantitative and semiquantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) methods to evaluate lung perfusion in idiopathic pulmonary fibrosis (IPF).

Methods In this prospective trial 41 subjects, including healthy control and IPF subjects, were studied using DCE-MRI at baseline. IPF subjects were then followed for 1 year; progressive IPF (IPF_{prog}) subjects were distinguished from stable IPF (IPF_{stable}) subjects based on a decline in percent predicted forced vital capacity (FVC % pred) or diffusing capacity of the lung for carbon monoxide (D_{LCO} % pred) measured during follow-up visits. 35 out of 41 subjects were retained for final baseline analysis (control: n=15; IPF_{stable} : n=14; IPF_{prog} : n=6). Seven measures and their coefficients of variation (CV) were derived using temporally resolved DCE-MRI. Two sets of global and regional comparisons were made: control *versus* IPF groups and control *versus* IPF_{stable} versus IPF_{prog} groups, using linear regression analysis. Each measure was compared with FVC % pred, D_{LCO} % pred and the lung clearance index (LCI % pred) using a Spearman rank correlation.

Results DCE-MRI identified regional perfusion differences between control and IPF subjects using first moment transit time (FMTT), contrast uptake slope and pulmonary blood flow (PBF) ($p \le 0.05$), while global averages did not. FMTT was shorter for IPF_{prog} compared with both IPF_{stable} (p=0.004) and control groups (p=0.023). Correlations were observed between PBF CV and D_{LCO} % pred ($r_s = -0.48$, p=0.022) and LCI % pred ($r_s = +0.47$, p=0.015). Significant group differences were detected in age (p < 0.001), D_{LCO} % pred (p < 0.001), FVC % pred (p=0.001) and LCI % pred (p=0.007).

Conclusions Global analysis obscures regional changes in pulmonary haemodynamics in IPF using DCE-MRI in IPF. Decreased FMTT may be a candidate marker for IPF progression.

Copyright ©The authors 2022. For reproduction rights and permissions contact permissions@ersnet.org

Received: 24 July 2021 Accepted: 24 Feb 2022