Gene expression signatures identify biologically and clinically distinct tuberculosis endotypes

Andrew R. DiNardo1,2,17, Tanmay Gandhi3,4,17, Jan Heyckendorf5,6,17, Sandra L. Grimm3,17, Kimal Rajapakshe3,4, Tomoki Nishiguchi1, Maja Reimann5, H. Lester Kirchner1,7, Jaqueline Kahari8, Qiniso Dlamini7, Christoph Lange1,5,9, Torsten Goldmann5, Sebastian Marwitz5, DZIF-TB cohort study group19, Abhimanyu1, Jeffrey D. Cirillo10, Stefan H.E. Kaufmann11,12,13, Mihai G. Netea2,14, Reinout van Crevel2,15, Anna M. Mandalakas1,18 and Cristian Coarfa3,4,16,18

1The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA. 2Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands. 3Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA. 4Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA. 5Pathology, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany. 6Department of Internal Medicine, University Hospital Schleswig-Holstein Campus, Kiel, Germany. 7Department of Population Health Sciences, Geisinger Health System, Danville, PA, USA. 8Baylor-Eswatini Children’s Foundation, Mbabane, Eswatini. 9Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany. 10Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, USA. 11Max Planck Institute for Infection Biology, Berlin, Germany. 12Hagler Institute for Advanced Study at Texas A&M University, College Station, TX, USA. 13Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany. 14Genomics and Immunoregulation, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany. 15Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. 16Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA. 17Co-first authors contributing equally. 18Co-senior authors contributing equally. 19Members of the DZIF-TB cohort study group are listed in the acknowledgements section.

Corresponding author: Cristian Coarfa (coarfa@bcm.edu)

Shareable abstract (@ERSpublications)
The host immune response to tuberculosis (TB) is not uniform. Unbiased bioinformatics identify distinct host immune responses (endotypes) associated with different clinical outcomes and different predicted beneficial host-directed therapy. https://bit.ly/3JbMhQL

This single-page version can be shared freely online.

Shareable abstract (@ERSpublications)
The host immune response to tuberculosis (TB) is not uniform. Unbiased bioinformatics identify distinct host immune responses (endotypes) associated with different clinical outcomes and different predicted beneficial host-directed therapy. https://bit.ly/3JbMhQL

Abstract

Background In vitro, animal model and clinical evidence suggests that tuberculosis is not a monomorphic disease, and that host response to tuberculosis is protean with multiple distinct molecular pathways and pathologies (endotypes). We applied unbiased clustering to identify separate tuberculosis endotypes with classifiable gene expression patterns and clinical outcomes.

Methods A cohort comprised of microarray gene expression data from microbiologically confirmed tuberculosis patients was used to identify putative endotypes. One microarray cohort with longitudinal clinical outcomes was reserved for validation, as were two RNA-sequencing (seq) cohorts. Finally, a separate cohort of tuberculosis patients with functional immune responses was evaluated to clarify stimulated from unstimulated immune responses.

Results A discovery cohort, including 435 tuberculosis patients and 533 asymptomatic controls, identified two tuberculosis endotypes. Endotype A is characterised by increased expression of genes related to inflammation and immunity and decreased metabolism and proliferation; in contrast, endotype B has increased activity of metabolism and proliferation pathways. An independent RNA-seq validation cohort, including 118 tuberculosis patients and 179 controls, validated the discovery results. Gene expression signatures for treatment failure were elevated in endotype A in the discovery cohort, and a separate
validation cohort confirmed that endotype A patients had slower time to culture conversion, and a reduced cure rate. These observations suggest that endotypes reflect functional immunity, supported by the observation that tuberculosis patients with a hyperinflammatory endotype have less responsive cytokine production upon stimulation.

Conclusion These findings provide evidence that metabolic and immune profiling could inform optimisation of endotype-specific host-directed therapies for tuberculosis.