

Improved prediction of asthma exacerbations by measuring distal airway inflammation

Emmanouil Paraskakis ¹, Evangelia Sarikloglou², Sotirios Fouzas ³, Paschalis Steiropoulos^{2,4}, Aggelos Tsalkidis^{2,5} and Andrew Bush^{6,7}

¹Paediatric Respiratory Unit, Dept of Paediatrics, Heraklion University Hospital, University of Crete Medical School, Heraklion, Greece. ²Medical School, Democritus University of Thrace, Alexandroupolis, Greece. ³Paediatric Respiratory Unit, University Hospital of Patras, Patras, Greece. ⁴Dept of Pneumonology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece. ⁵Dept of Paediatrics, Medical School, Democritus University of Thrace, Alexandroupolis, Greece. ⁶Dept of Paediatrics, National Heart and Lung Institute, London, UK. ⁷Dept of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK.

Corresponding author: Emmanouil Paraskakis (eparaska@uoc.gr)

Shareable abstract (@ERSpublications) Partitioning exhaled nitric oxide allows improved prediction of risk of an asthma attack in the subsequent 4 months. C_{alvNO} >7 ppb was highly specific for a subsequent exacerbation, while C_{alvNO} <4 ppb excluded risk of an attack with high specificity. https://bit.ly/3zWZWYp

Cite this article as: Paraskakis E, Sarikloglou E, Fouzas S, *et al.* Improved prediction of asthma exacerbations by measuring distal airway inflammation. *Eur Respir J* 2022; 60: 2101684 [DOI: 10.1183/ 13993003.01684-2021].

This single-page version can be shared freely online.

Abstract

Introduction Partitioning parameters measured from exhaled nitric oxide, such as the alveolar concentration of nitric oxide (C_{alvNO}), may provide better predictors of future asthma exacerbation than exhaled nitric oxide fraction at an expiratory flow rate of 50 mL·s⁻¹ ($F_{ENO_{50}}$). We aimed to determine whether any partitioned nitric oxide parameters were more closely associated than $F_{ENO_{50}}$ with subsequent asthma exacerbations.

Methods 68 asthmatic children (mean±sD age 9.0±2.4 years) were followed prospectively (134 visits) and exacerbations were recorded. Childhood Asthma Control Test (cACT), spirometry, $F_{\text{ENO}_{50}}$, C_{alvNO} , bronchial flux of nitric oxide (J_{awNO}), transfer factor of nitric oxide (D_{awNO}) and airway wall concentration of nitric oxide (C_{awNO}) were measured.

Results No exacerbation was recorded in 99 visits (Group 1) and an exacerbation was recorded in 35 visits (Group 2). The median (range) $F_{\text{ENO}_{50}}$, J_{awNO} , C_{alvNO} , D_{awNO} and C_{awNO} of Group 1 versus Group 2: 12.7 (4–209) versus 13.5 (3.8–149.9) ppb, 715 (10–12 799) versus 438 (40–7457) pL·s⁻¹, 3.4 (0.2–10.8) versus 5.2 (1.7–23.6) ppb, 38.3 (0.2–113.3) versus 38 (1.3–144.5) pL·s⁻¹·ppb⁻¹ and 26.8 (4.1–2163) versus 29.9 (5.5–3054) ppb, respectively. Other than for C_{alvNO} (p<0.001), there was no difference between the two groups. $C_{alvNO} > 7$ ppb predicted asthma exacerbation with specificity 90.9% and positive likelihood ratio (LR) 3.1. Conversely, $C_{alvNO} < 4$ ppb excluded an exacerbation with sensitivity 71.4% and negative LR 0.48. An increase of C_{alvNO} by 0.5 ppb between visits could also predict an exacerbation with sensitivity 92%, specificity 92%, positive LR 11.8 and negative LR 0.08.

Conclusions Assessment of C_{alvNO} improved prediction of subsequent exacerbation, highlighting the importance of distal inflammation in asthma outcomes in children.

Copyright ©The authors 2022. For reproduction rights and permissions contact permissions@ersnet.org

This article has an editorial commentary: https://doi.org/10.1183/ 13993003.00802-2022

Received: 14 June 2021 Accepted: 5 Jan 2022