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Introduction
Motile cilia (figure 1a) are organelles that extend from the apical membranes of differentiated epithelial
cells [1]. Cilia waveform is coordinated by their ultrastructure and microtubule arrangement; e.g. “9+2”
cilia (figure 1b) perform metachronal “whip-like” movement, “9+0” embryonic nodal cilia have rotational
movement. Axonemal dyneins are adenosine triphosphate (ATP) driven, mechano-chemically regulated,
motor proteins responsible for cilia motility. Over 200 “9+2” cilia per cell line mucosal surfaces of several
body sites (e.g. airway, reproductive oviducts, brain ependyma) where mucociliary clearance (MCC) and
fluid flow is required. Airway MCC is critical for host defence, removing inhaled pathogens, particulates
and mucus (figure 1c).

Primary ciliary dyskinesia (PCD) is mostly an autosomal recessive condition (except rare autosomal
dominant and X-linked cases) affecting approximately 1:7554 individuals [2]. MCC impairment causes
recurrent airway infection, chronic wet cough, progressive irreversible lung damage, bronchiectasis and
mucus obstruction [3]. Mutations in over 50 different genes cause different cilia abnormalities, some
causing a worse prognosis than others. Genetic testing (sequencing a panel, whole exome or whole
genome) can identify up to 70% of PCD [4, 5]. Variants of unknown pathogenicity require functional and
structural diagnostic tests to elevate the status of these variants or discount them. Secondary ciliary
dyskinesia (SCD) is not inherited or caused by structurally defective cilia. Airway diseases such as
idiopathic bronchiectasis [6], COPD [7] and asthma [8] incur SCD due to cellular damage. Thick mucus in
cystic fibrosis can prevent normal ciliary waveform [9].

Airway MCC in vivo has been studied with clearance time for dye [10], saccharin and/or charcoal [11, 12]
or radioactive isotopes [13]. Recently, in vivo MCC has been advanced through optical coherence
tomography [14, 15]. Ciliary function can be studied using ciliated single cell organelles, e.g.
Chlamydomonas [16], small organisms, e.g. planaria [17], nasal/tracheal brushing biopsies, or surgical
explants from larger animals, such as mouse [18, 19], rat, guinea-pig, rabbit, dog, pig and cow [20], as
well as human ex vivo and in vitro cell culture samples.

State-of-the-art ciliary function testing
Airway cilia sampling
Thin layers/clusters of epithelial cells are preferable for live cilia imaging. Nasal epithelial cell samples
may be acquired by curette [21] or brushing biopsy [22, 23]. Tracheal or bronchial epithelial cell samples
can be obtaining by brushing biopsy during bronchoscopy [24]. Excessive nasal mucus that impedes
access to ciliated epithelium can be reduced by nasal douching with saline prior to sampling [22]. Excess
mucus may be reduced post-sampling by adding additional medium, agitating and centrifuging to re-pellet
ciliated cells. Air–liquid interface (ALI) cultures may be washed in processing to reduce mucus build-up
before use [22]. Inhaled anaesthetics depress ciliary function [25, 26], therefore anaesthetic or topical nasal
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agents that potentially modify ciliary function should be avoided or washed out before baseline
measurements. Sampling and infection damage increase SCD [27, 28]. Donors should be 4–6 weeks free
of infection, sampling methods need to be practised, and cell culture considered to maximise sample
quality and ciliary function interpretation [29, 30].

Ciliary beat frequency analysis
Ciliary beat frequency (CBF) is a quantitative measure of cilia speed. CBF is environmentally dependent
(e.g. temperature, pH, medium type, chemical additives, mechanical vibration and time from sampling) and
varies by sample, donor or organism. CBF is reduced on single cells, therefore measurements from intact
cell clusters are representative [31]. CHILVERS and O’CALLAGHAN[32] demonstrated that different methods of
CBF measurement are not interchangeable. The photomultiplier [33] and photodiode [34] methods both
significantly under-recorded mean CBF compared to digital high-speed video with manual analysis, under
standardised 37°C and pH 7.4 conditions (n=200 measurements per method across 20 donors) [32]. The
relationship between CBF and temperature is sigmoidal (linear between 7°C and 32°C) [35]. Testing at
unregulated ambient temperature or below 32°C risks increased CBF variability and reduced
reproducibility. Local normal/reference CBF ranges need to be established with specific methods and
equipment, and are not transferable across centres.

Advances in ciliary beat pattern analysis
High-speed video microscopy analysis (HSVA) facilitates CBF and ciliary beat pattern (CBP) and
waveform analysis, in real-time and slow motion, adding invaluable evidence. A light microscope (inverted
or upright) requires a long working distance, high numerical aperture (plan apochromatic) and
magnification objective lens (e.g. 63× and above). Lower lens magnifications or lower camera digital
resolutions (Southampton uses a Photron FASTCAM MC2 with 512×512 pixel resolution) risk poor

a) e)c) Fluid/flow/MCC
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FIGURE 1 Microscopic cilia assessment by various methods. a) Scanning electron microscopy of ciliated airway epithelium (scale 10 µm).
b) Transmission electron microscopy of airway cilia in cross-section (scale 200 nm). c) Diagram demonstrating ciliated airway epithelium and goblet
cell secreting mucus into the peri-ciliary layer, with direction of ciliary movement and mucociliary clearance (MCC). d) High-speed video microscopy
analysis (HSVA) (at 37°C) of air–liquid interface (ALI) cultured airway epithelium on Transwell insert (20× objective), with fast Fourier transform
“heat-map” analysis of ciliary beat frequency in Fiji ImageJ (scale 100 µm). e) Image of ciliated nasal brushing biopsy taken by HSVA (100×
objective; scale 10 µm). f ) QR code for representative HSVA video data before and after ALI culture to remove secondary dyskinesia and verify
primary ciliary dyskinesia.
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resolution image data that is more challenging and often impossible to interpret, e.g. for subtle reductions
in ciliary beat amplitude and flexibility. A high-speed video camera should be able to image upwards of
120 frames per second (fps), ideally 500 fps, to acquire enough frame-by-frame CBP detail. For example,
if cilia moving at 20 Hz [22, 23, 36] were recorded, 25 frames per ciliary beat would be taken at 500 fps,
opposed to only six frames if recorded at 120 fps.

For PCD diagnostics, CBP analysis is conducted using software that facilitates slow-motion playback
(30–60 fps recommended [30]). CBP analysis is mostly subjective with arbitrary measures of side and top
views [36] (see [22] with supplementary videos at https://zenodo.org/record/4115168; figure 1e and f). It is
imperative that investigators develop ciliary function analysis expertise to conduct reproducible data. The
European Respiratory Society Clinical Research Collaboration BEAT-PCD (http://beat-pcd.squarespace.
com), the European Reference Center for Rare Lung Diseases (ERN-LUNG) (https://ern-lung.eu/) and the
UK Cilia Network (https://www.cilianetwork.org.uk) provide training and access to researchers and
clinicians with expertise in cilia structure and function. The UK PCD diagnostic centres have shared
standard protocols and analyse ciliary function (after sample equilibration at the microscope, heated to
37°C) within hours of sampling to maintain sample integrity [37], also enabling same day results for
PCD-likely cases [36]. We [38] and others [39] have reported that cooling cilia from 37°C to ambient
temperature caused the abnormal ciliary waveform in several PCD samples to become less evident, which
could risk PCD misdiagnosis if transmission electron microscopy is normal, or testing resources/expertise
are limited.

As well as maintaining a stable sample pH 7.4 (e.g. Hanks’ balanced salts, HEPES buffering or 5% CO2

equilibration), addition of a broad-spectrum antibiotic (e.g. penicillin-streptomycin) is advisable to inhibit
bacterial growth. It is also important to avoid mechanical–vibrational cilia stimulus and consider how
sample additives such as ATP, calcium, anaesthetics or mucolytics may affect sample health and ciliary
function. If the effect of drug treatment on ciliary function is being assessed, it is important to consider
pre-treatment baseline and temporal variability of ciliary function with drug action and half-life.
Time-lapse coupled HSVA can facilitate continuous temporal cilia analysis of multiple experimental
conditions in different wells, from specific x, y, z locations offering data repeatability [40, 41]. The caveat
of this method is that it relies on the ciliated cells remaining in situ, e.g. nasal brushing samples grown on
plastic or ALI cultures on membranes, rather than free floating spheroids able to move out of position.

HSVA recordings can be post hoc analysed to determine mean CBF across a whole field of view or within
a region of interest. Manually calculated, CBF (Hz) is equal to the recording frame rate (fps) divided by
the number of frames for one ciliary beat (averaged from 6–10 separate areas) [36]. CBF and percentage
area of ciliary movement can also be measured computationally, e.g. Sisson-Ammons Video Analysis
(SAVA), ciliaFA [42], Fiji ImageJ with fast Fourier transform (FFT) custom plugin [22] (figure 1d) or
CiliarMove [43], to name common software platforms. When there are mixed beat pattern phenotypes (e.g.
static and hyperfrequent twitching [4, 18, 36] with high variation in CBF in PCD, a mean CBF is not
representative. When subtle beat pattern PCD abnormalities occur in PCD (e.g. HYDIN mutation cases)
often with normal CBF [5, 36, 44], then only cilia waveform assessment is diagnostically informative. ALI
culture can be employed to regrow cilia in vitro to help identify PCD and reduce patient recall, by
removing confounding secondary health/infection issues [22, 23, 45, 46]. MARTHIN et al. [47] described
how three-dimensional organoids (spheroids) can be cultured from nasal brush samples by preventing cell
attachment with repeated agitation during the initial 4 h of incubation. Single spheroids can be immobilised
by flattening between glass slide and cover slip, permitting HSVA on side views of the spheroids. HSVA
is a staple validation tool for cilia culture models, e.g. employed to determine CBF of the advanced
“airway-on-a-chip” ALI cultures amongst other tests [48]; airway epithelial cells are differentiated at an
ALI under continuous perfusion via a basolateral microchannel.

HSVA is an important diagnostic and research tool in the field of PCD [4, 49] and when conducted by
experts has good accuracy to identify PCD patients [36]. Whilst HSVA has good diagnostic accuracy it is
not available at every diagnostic centre due to limited resources [50]. A major challenge for HSVA
remains the lack of unified language or quantitative measures to describe CBPs for PCD or SCD [51, 52].

Quantitative ciliary beat pattern analysis
Novel quantitative parameters can track the position of a single cilium over an entire cycle of beating. The
position of the cilium base as well as the positions of the cilium tip at the start and the end of the active
stroke are measured in a series of frames, but require repeating on at least 10 spatially distant individual
cilia (per sample) to be representative. The distance travelled by the cilium tip or the angle described by
the cilium may be calculated through trigonometry [53, 54]. The entire cilium position from base to tip can
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be “curve-fitted” providing data on waveform in space and time. Waveform shape, curvature and bend
amplitude can be mathematically described, and kinematics can be applied to measurements of flow
velocity [55–59]. Lack of commercial software prevents widespread application of these quantitative
mathematical descriptors of CBP.

MCC analysis
The mucociliary interface consists distinctive gel-like layers, a watery periciliary ciliary layer (PCL) and a
soluble transporting mucus layer. Cilia move asymmetrically within the PCL to create flow (at low
Reynolds number, where viscous forces overcome inertial effects). The transporting mucus layer contains
two major heavily glycosylated mucins, MUC5AC and MUC5B, and many other globular proteins,
produced by mucus-secreting goblet cells [60]. Mucins enable dynamic mucus attachment to cilia to
facilitate MCC to protect the airway [61]. MCC, or cilia driven flow, can be quantified by dynamically
imaging the transport of cellular debris, synthetic microbeads (1 to 3 µm, with or without fluorescence) or
fluorescent dyes across the surface of tissue explants or ALI cultures when added to the sample’s media.
The benefit of using uniformly shaped microbeads opposed to tracking debris, particularly with added
fluorescence, is the ease of particle identification by microscopy and for velocimetry analysis. It is
important to measure the distance (in x, y, z plane) between cilia and microbead or debris item when
tracking the velocity, as mucociliary flow rate decreases with increased distance from the cilia [62].
Differentiated epithelial cell ALI cultures develop mucus vortices as an artefact of their environment [63].
Microfluidic devices to direct fluid flow [64] or culture membrane modifications, such as collagen
substrate patterning [65], help polarise epithelial cell growth which promotes unidirectional cell–cilia
alignment. No specific studies have assessed the quality of ciliary function in these instances.

Summary
State-of-the-art ciliary function analysis of airway epithelium underpins PCD diagnostics and also enables
understanding of how cilia move in health or when temporarily damaged. Ciliary function analysis can
underpin investigations of epithelial cell differentiation, integrity, disease, infection and drug therapy
evaluation in airway culture models [41, 66–68].

Ciliary function assessment through HSVA is predominantly carried out manually, and requires expertise
to meaningfully assess CBP. Quantitative cilia analysis could replace non-standardised, subjective
assessment to better study subtle CBP changes; the lack of commercially available software hinders this.
Artificial intelligence, used for the first time in the transmission electron microscopy assessment of cilia for
PCD diagnostics [69], could potentially quantify cilia waveforms and model ciliary function. If developed,
such platforms will enable future standardisation of testing and time-saving.
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