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Abstract
Background Chronic lung allograft dysfunction (CLAD) is the principal cause of graft failure in lung
transplant recipients and prognosis depends on CLAD phenotype. We used a machine learning computed
tomography (CT) lung texture analysis tool at CLAD diagnosis for phenotyping and prognostication
compared with radiologist scoring.
Methods This retrospective study included all adult first double lung transplant patients ( January 2010–
December 2015) with CLAD (censored December 2019) and inspiratory CT near CLAD diagnosis. The
machine learning tool quantified ground-glass opacity, reticulation, hyperlucent lung and pulmonary vessel
volume (PVV). Two radiologists scored for ground-glass opacity, reticulation, consolidation, pleural
effusion, air trapping and bronchiectasis. Receiver operating characteristic curve analysis was used to
evaluate the diagnostic performance of machine learning and radiologist for CLAD phenotype.
Multivariable Cox proportional hazards regression analysis for allograft survival controlled for age, sex,
native lung disease, cytomegalovirus serostatus and CLAD phenotype.
Results 88 patients were included (57 bronchiolitis obliterans syndrome (BOS), 20 restrictive allograft
syndrome (RAS)/mixed and 11 unclassified/undefined) with CT a median 9.5 days from CLAD onset.
Radiologist and machine learning parameters phenotyped RAS/mixed with PVV as the strongest indicator
(area under the curve (AUC) 0.85). Machine learning hyperlucent lung phenotyped BOS using only
inspiratory CT (AUC 0.76). Radiologist and machine learning parameters predicted graft failure in the
multivariable analysis, best with PVV (hazard ratio 1.23, 95% CI 1.05–1.44; p=0.01).
Conclusions Machine learning discriminated between CLAD phenotypes on CT. Both radiologist and
machine learning scoring were associated with graft failure, independent of CLAD phenotype. PVV,
unique to machine learning, was the strongest in phenotyping and prognostication.

Introduction
Chronic lung allograft dysfunction (CLAD) is the principal cause of graft failure in lung transplant
recipients. Bronchiolitis obliterans syndrome (BOS) is the most frequent CLAD phenotype and is
characterised by progressive obstructive lung disease [1]. A restrictive phenotype, restrictive allograft
syndrome (RAS), is now well recognised, and is associated with parenchymal fibrosis and a worse
prognosis, but is less frequent than BOS [2]. In addition to these two phenotypes, the International Society
of Heart and Lung Transplantation 2019 consensus statement added a mixed phenotype and an undefined
phenotype [1]. Furthermore, a small but significant proportion of patients may be unclassifiable using the
existing framework [3].
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Imaging of CLAD is best documented for BOS [4]. On computed tomography (CT), BOS is characterised
by geographic regions of air trapping that manifest as hyperlucent lung, accentuated by exhalation.
Bronchial wall thickening occurs with bronchiectasis developing over time, often in association with
mucus plugging and clustered nodules [5]. The typical appearance of RAS is consolidation and
ground-glass opacity evolving into reticulation and traction bronchiectasis with pleural and parenchymal
fibrosis, more commonly in the upper lung zones [5]. CT features have been associated with
allograft survival in double lung transplant patients using a radiologist-scored approach [3, 6–8] and
when using quantitative measures of lung density, volume, parametric response mapping and airway
measures [9–15].

The CALIPER (Computer-Aided Lung Informatics for Pathology Evaluation and Rating) tool is a
validated machine learning algorithm that performs automated, quantitative analysis of lung texture on CT
[16]. It segments the lung from the chest and classifies each portion of the lung as either normal,
hyperlucent, reticular, ground-glass or honeycomb texture. It has been principally used in the evaluation of
idiopathic pulmonary fibrosis where it is superior to visual analysis in quantifying extent of disease and
predicting survival [17–19]. The strongest predictor of survival is pulmonary vessel volume (PVV), a
biomarker derived from the machine learning analysis with no direct visual correlate [20].

Although hyperlucent, ground-glass and reticular textures are typical features of diffuse lung disease in
nontransplant patients, they are also reported features of CLAD. For this reason, we hypothesised that an
existing machine learning analysis tool may be useful in the phenotyping of CLAD and in predicting graft
survival. Indeed, quantitative assessment of chest CT has been identified as a key future direction in
CLAD research [1] and we sought to address this need.

Materials and methods
Patient selection
This single-centre retrospective study has been approved by the University Health Network Research
Ethics Board (REB 15-9531-AE). All adult first double lung transplant patients transplanted between 2010
and 2015 were selected. Exclusion criteria included single lung transplants, heart–lung transplants and
re-transplants. We then excluded those who died without CLAD, those who were CLAD-free up to 31
December 2019 and those who had non-CLAD pulmonary function decline. Patients were required to have
had a thin-section CT within 100 days after CLAD onset or, if unavailable, within 28 days before onset.
Clinical characteristics were extracted from the medical record and date of CLAD onset was derived.
CLAD phenotype and date of onset was assigned according to previously described methodology and
considered the gold standard for the subsequent sensitivity analyses [3]. Graft failure was defined as death
or re-transplantation.

We further collected virtual crossmatch status at the time of transplant (i.e. donor-specific antibodies
(DSA) at transplant), the presence of DSA at CLAD onset based on the last test before onset or ⩽3 weeks
after onset, as well as development of de novo DSA between transplant and CLAD onset. The pre-CLAD
infection score (number of pre-CLAD bronchoalveolar lavage with significant pathogens divided by the
number of all pre-CLAD bronchoalveolar lavage) and pre-CLAD acute cellular rejection score (sum of
histological A grades divided by the number of all evaluable biopsies) were also calculated.

Radiological follow-up
Our routine lung transplant CT protocol is a low-dose scan acquired at end-inspiration and followed by a
minimal-dose scan at end-expiration. Generally, a low-dose scan is performed at around one-third the dose
of a regular dose scan and the minimal-dose scan is performed at one-tenth the dose of a regular dose
scan. Surveillance CT scans are performed at 3-month intervals for the first year post-transplant and then at
18 and 24 months, with CT also being performed as needed when CLAD is suspected. All patients were
scanned on one of three multislice CT units (Aquilion, Aquilion ONE or Aquilion PRIME; Canon
Medical, Otawara, Japan) at Toronto General Hospital (Toronto, ON, Canada). For inclusion in the study,
the CT scan had to be noncontrast and have a transverse image series in a mediastinal reconstruction
algorithm with contiguous slices of thickness ⩽1 mm. Each scan was reviewed by a fellowship-trained
thoracic radiologist (M.C.M., 5 years of experience) to assess for factors that may interfere with texture
analysis, including respiratory motion artefacts and patient intubation.

Machine learning (“ML”) analysis
Qualifying CT scans were analysed using the Lung Texture Analysis tool (Imbio, Minneapolis, MN, USA)
based on CALIPER, with the development and training of the machine learning algorithm having been
previously described [16]. This is a tool that performs a texture analysis in interstitial lung disease but was
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not trained on our lung transplant cohort. In brief, the lung is segmented from the chest wall, and the large
airways and central vasculature are removed. It then assigns a texture (normal lung (NLML), hyperlucent
lung (HLML), ground-glass opacity (GGOML), reticular (RETML) or honeycombing) to each voxel and a
colour overlay output is made available for review on the picture archiving and communications system
(Coral, Toronto, ON, Canada) (figure 1). Quantitative data in the form of total lung capacity (CTTLC),
volumes for each assigned texture and pulmonary vessel volume (PVVML) are provided in a
comma-separated values file output from a locally hosted server. A thoracic radiologist (M.C.M.) reviewed
all CT scans with the output overlay present to exclude studies where segmentation failed (i.e.
extrapulmonary structures comprised an estimated >1% of lung volume).

Radiologist (“RAD”) analysis
CT scans were independently evaluated by two fellowship-trained cardiothoracic radiologists each with
5 years of experience (G.R.K. and C.H.), who were blinded to all clinical information, outcome and
machine learning results. A semiquantitative scoring system was used as previously described by SUHLING
et al. [6]. In brief, a CT image of the upper, mid and lower lung was selected at a predetermined interval
(25th, 50th and 75th percentile image) and presented in lung windows (width 1500 HU, level −600 HU)
and mediastinal windows (width 350 HU, level 40 HU). Each lung was evaluated for consolidation
(CONRAD), ground-glass opacity (GGORAD), reticulation (RETRAD), traction bronchiectasis and pleural

a) b)

c) d)

FIGURE 1 Inspiratory computed tomography (CT) and machine learning output in chronic lung allograft
dysfunction. a, b) In a 36-year-old woman with bronchiolitis obliterans syndrome, a) conventional CT analysis
demonstrates normal appearing lung that, on b) texture analysis, is a mix of normal (green) and hyperlucent
(blue). c, d) In a 40-year-old man with a mixed phenotype, c) conventional CT analysis demonstrates
ground-glass opacity and reticulation that, on d) texture analysis, is also classified as a mixture of ground-glass
opacity (yellow) and reticulation (orange).
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effusion using established definitions [21]. Each lung was also evaluated for air trapping (ATRAD) using
the same selected images paired with an expiratory image at the same level, when expiratory was
performed. Each finding in each lung was scored on a grading of 0–2 (0: abnormality was not present;
1: abnormality involved <10% of the lung; 2: abnormality involved >10% of the lung). The radiologists
were initially trained on a set of 18 images derived from six representative CLAD patients who were not
included in this study.

Statistical analysis
Continuous variables were described using median (interquartile range (IQR)) or mean with standard
deviation and categorical variables were described using number (percentage). Comparisons between two
groups were made by the independent samples t-test or Mann–Whitney U-test for continuous variables and
Fisher’s exact test or the Chi-squared test for categorical variables. Variables analysed by a t-test were
evaluated for normality using histograms or a Shapiro–Wilks test, when appropriate.

For radiologist scoring, agreement was assessed with intraclass correlation coefficients (ICCs) for
GGORAD, RETRAD, CONRAD and ATRAD, and with weighted κ for pleural effusion and bronchiectasis.
The mean of the two radiologist’s scores was used in analysis. For machine learning scoring, all variables
were divided by CTTLC to derive the proportion of total lung involved and are expressed as a percentage
value. The relationship between ATRAD and HLML was evaluated using the Pearson correlation coefficient.
The relationship between CTTLC and TLC from pulmonary function testing at the time of CLAD diagnosis
was evaluated using the Pearson correlation coefficient.

The radiologist and machine learning scores were compared between CLAD phenotype groups using
logistic regression models. RAS and mixed CLAD phenotypes were grouped to account for small
numbers, as were unclassified and undefined phenotypes. Receiver operating characteristic (ROC) curve
analysis was used to determine the diagnostic performance for CLAD phenotyping.

Cox proportional hazards regression analysis was used to assess the association of radiologist and machine
learning scoring with graft failure, and proportional hazards assumption validity was tested. Univariable
and multivariable Cox proportional hazards regression analyses were performed for each score adjusted for
the following covariates selected a priori based on their known association with post-lung transplant
outcomes: age (per 5-year intervals), male sex, native lung disease (chronic obstructive pulmonary disease,
cystic fibrosis or interstitial lung disease), cytomegalovirus recipient–donor serostatus matching and CLAD
phenotype (RAS/mixed or unclassified/undefined) [22]. For illustration purposes, Kaplan–Meier curves
were generated using the tertiles of each quantitative and semiquantitative variable assessed. A p-value
<0.05 was considered statistically significant. Analysis was conducted in R version 4.0 (R Foundation for
Statistical Computing, Vienna, Austria).

Results
Patient cohort and CT acquisition
There were 211 patients with a diagnosis of CLAD, of whom 95 had an eligible CT (figure 2). Machine
learning segmented the lung in 93% of cases. The final CLAD cohort therefore consisted of 88 patients:
57 BOS, 12 RAS, eight mixed, eight undefined and three unclassified. The only significant difference
across CLAD phenotypes in clinical characteristics was a longer time from CLAD diagnosis to graft failure
in patients with BOS (p=0.012) (table 1). Analysis of pre-CLAD immunological variables (infection score,
rejection score and de novo DSA) as well DSA status at CLAD onset and virtual crossmatch status at
transplant revealed no significant differences across CLAD phenotypes (supplementary table E1).

CT was performed on the day of CLAD onset in 15 patients, in the first 100 days after CLAD onset in 64
patients and in the 28 days preceding CLAD onset in nine patients, with an overall median interval of
9.5 days after CLAD diagnosis. CTTLC was strongly correlated with TLC (r=0.897, p<0.001)
(supplementary figure E1). Technical parameters of the CT examinations are provided in supplementary
table E2.

Machine learning analysis
The proportion of HLML was highest in the BOS group (p<0.001). GGOML, RETML and PVVML were
highest in the RAS/mixed group (p<0.001) (table 2). A visual representation of all machine learning output
in the form of glyphs is presented in supplementary figures E2 and E3. No significant volume of
honeycombing was identified (median (IQR) 0.022% (0.009–0.06%)) and it was therefore excluded from
analyses.
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ROC analysis demonstrated that GGOML, RETML and PVVML had strong diagnostic capability in
identifying the RAS/mixed phenotype (area under the curve (AUC) 0.84–0.85), and this was strongest with
PVVML. Using a cut-point of 3%, PVVML had a sensitivity and specificity of 90.0% and 70.1%,
respectively (OR 2.08; p<0.001) (table 3). The ROC curves are provided in supplementary figure E4.
Phenotyping of BOS with HLML was achieved using inspiratory CT (AUC 0.76) and did not utilise the
expiratory CT to identify air trapping (table 3).

Radiologist scoring
Interrater reliability was good for GGORAD, RETRAD and CONRAD (ICC 0.89, 0.81 and 0.84,
respectively). There was moderate interrater reliability for pleural effusion (weighted κ=0.60) and poor
interrater reliability for bronchiectasis (weighted κ=0.42), likely related to the infrequency of these
findings. All scored features were highest in the RAS/mixed group (p<0.001) except bronchiectasis (table 2).
ROC analysis demonstrated strong diagnostic capability for GGORAD, RETRAD and CONRAD in
identifying the RAS/mixed phenotype (table 3).

A subset of 50 patients had expiratory imaging available (34 BOS, 11 RAS/mixed and five undefined).
Interrater reliability was moderate for ATRAD (ICC 0.52) and among the lowest of the radiological
findings. ATRAD was significantly higher in the BOS group (median (IQR) 6 (3.5–8)) than in RAS/mixed
(median (IQR) 2 (1–5)) and undefined (median (IQR) 2 (0.75–3); p=0.003), but was only weakly
correlated with HLML (r=0.189, p=0.188).

Allograft survival analysis
Univariable analysis of the baseline clinical variables showed that age (HR 0.89; p=0.003) and RAS/mixed
phenotype (HR 2.24; p=0.008) were associated with time to graft failure after CLAD diagnosis
(supplementary table E3). BOS phenotype was not associated with graft failure (HR 0.83; p=0.674) and

All lung transplant operations

between 2010 and 2015

n=667

Age <18 years: 20 (3.0%)

Single lung: 111 (16.6%)

Heart–lung transplant: 3 (0.4%)

Re-transplant: 27 (4.0%)

Adult, first, bilateral lung transplant

operations between 2010 and 2015

n=506

Insufficient PFTs: 39 (7.7%)

Known other underlying cause: 19 (3.8%)

CLAD-free: 236 (46.6%)

Missing data: 1 (0.2%)

Diagnosis of CLAD

n=211

CLAD with texture analysis

n=88

No CT in time window: 56 (26.5%)

No thin sections on CT: 59 (30.0%)

Diffusely expiratory: 1 (0.05%)

Failure of segmentation: 7 (3.3%)#

FIGURE 2 Flowchart of patient inclusion criteria. #: failure of segmentation related to classifying trachea (four
cases), chest wall (two cases) or abdominal fat (one case) as lung. PFT: pulmonary function test; CLAD: chronic
lung allograft dysfunction; CT: computed tomography.
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was not included in the multivariable analysis. Univariable analysis of the radiologist and machine learning
scores showed an association with graft failure for all variables assessed except NLML and HLML (table 4).

In multivariable analyses, radiologist scoring of GGORAD, RETRAD and CONRAD was independently
associated with graft failure (table 4). Machine learning scoring of RETML and PVVML was also
independently associated with graft failure, and GGOML approached statistical significance (HR 1.36, 95%
CI 1.00–1.86; p=0.050) (table 4). NLML and HLML were not associated with graft failure.

Although the proportions of NLML and HLML were not associated with graft failure, in their multivariable
analyses there was an independent association of RAS/mixed phenotype with graft failure (HR 2.73, 95%
CI 1.42–5.28; p=0.00 and HR 2.43, 95% CI 1.21–4.85; p=0.01, respectively) and it was only in these two

TABLE 2 Radiologist and machine learning analysis of chest computed tomography scans tabulated by chronic lung allograft dysfunction
phenotypes

BOS (n=57) RAS/mixed (n=12/8) Undefined/unclassified (n=8/3) p-value

Radiologist (score)
Consolidation 0.50 (0.00–1.00) 3.00 (1.50–5.00) 0.50 (0.00–1.25) <0.001*
Ground-glass opacity 4.00 (2.00–6.50) 9.00 (7.38–10.50) 4.00 (1.50–7.25) <0.001*
Reticulation 2.50 (0.50–6.00) 8.00 (6.50–9.62) 3.00 (0.75–6.50) <0.001*
Bronchiectasis 0.00 (0.00–0.50) 0.00 (0.00–0.62) 0.00 (0.00–0.00) 0.298
Pleural effusion 0.00 (0.00–0.00) 1.00 (0.50–1.88) 0.00 (0.00–0.50) <0.001*

Machine learning (%)
Normal 88.74 (77.14–94.51) 89.50 (81.59–93.24) 94.45 (79.59–96.21) 0.534
Hyperlucent 5.75 (1.00–19.88) 0.12 (0.05–1.51) 0.68 (0.23–5.81) <0.001*
Ground-glass opacity 0.45 (0.17–1.70) 6.43 (1.67–13.08) 0.85 (0.22–2.67) <0.001*
Reticular 0.53 (0.23–1.46) 2.35 (1.43–3.63) 1.15 (0.22–2.01) <0.001*
PVV 2.27 (1.95–3.14) 4.06 (3.28–5.25) 2.29 (1.92–3.31) <0.001*

Data are presented as median (interquartile range), unless otherwise stated. BOS: bronchiolitis obliterans syndrome; RAS: restrictive allograft
syndrome; PVV: pulmonary vessel volume. *: p<0.05.

TABLE 1 Patient characteristics by chronic lung allograft dysfunction (CLAD) phenotype

BOS (n=57) RAS/mixed
(n=12/8)

Undefined/unclassified
(n=8/3)

p-value

Age at transplant (years) 47.81±15.41 45.45±17.39 48.09±17.02 0.84
Sex 0.526
Female 31 (54.4) 8 (40.0) 6 (54.5)
Male 26 (45.6) 12 (60.0) 5 (45.5)

Native lung disease 0.45
ILD 20 (35.1) 10 (50.0) 1 (9.1)
Cystic fibrosis 16 (28.1) 4 (20.0) 4 (36.4)
COPD 14 (24.6) 3 (15.0) 4 (36.4)
Other 7 (12.3) 3 (15.0) 2 (18.2)

Time to CLAD onset (days) 700 (367–1171) 624 (425–1125) 804 (445–1370) 0.765
Graft failure 0.803
Death 27 (77.1) 13 (76.5) 6 (66.7)
Re-transplant 8 (22.9) 4 (23.5) 3 (33.3)

CMV serostatus 0.638
D−R− 8 (14.0) 1 (5.0) 1 (9.1)
D+R− 15 (26.3) 4 (20.0) 4 (36.4)
R+ 34 (59.6) 15 (75.0) 6 (54.5)

Time from CLAD onset to graft
failure (days)

746 (445–1135) 370 (250–574) 520 (429–694) 0.012*

Data are presented as mean±SD, n (%) or median (interquartile range), unless otherwise stated. BOS: bronchiolitis
obliterans syndrome; RAS: restrictive allograft syndrome; ILD: interstitial lung disease; COPD: chronic obstructive
pulmonary disease; CMV: cytomegalovirus; D: donor; R: recipient. *: p<0.05.
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multivariable analyses that any independent association of CLAD phenotype with graft failure was
identified. Details of the machine learning and radiologist multivariable analyses are provided in
supplementary tables E4–E6.

The proportion of each radiological finding was stratified by tertiles and Kaplan–Meier curves were
generated to facilitate visualisation of lung allograft survival after CLAD diagnosis (figure 3). The greatest
separation of all tertiles was seen with RETRAD, with 50% allograft survival at 439 days in the tertile with
the most reticulation compared with 1134 and 1700 days in the middle and lowest tertile, respectively
(p=0.002).

Because of the heterogeneity seen in supplementary figures E2 and E3 where some cases of BOS were
observed to have ground-glass opacity and reticulation, whereas other cases in the undefined/unclassified
grouping were observed to contain hyperlucent lung, we empirically regrouped cases into three basic
imaging patterns: Group 1: inflammatory presentation (GGOML and RETML >1% of CTTLC); Group 2:
hyperlucent presentation (HLML >10% of CTTLC); and Group 3: indeterminate presentation (fulfilling
neither Group 1 nor Group 2 criteria). The revised glyph grouping is presented in supplementary figure E5
and Kaplan–Meier curves are presented in supplementary figure E6. Using this classification, the

TABLE 3 Univariable logistic regression and receiver operating (ROC) curve analysis for the proportion of
machine learning and radiologist variables in bronchiolitis obliterans syndrome phenotype for hyperlucent lung
(HLML) and restrictive allograft dysfunction/mixed phenotype for all other variables

Texture ROC curve analysis Univariable logistic
regression

Optimal cut-point Sensitivity Specificity Accuracy AUC Odds ratio p-value

Machine learning
HLML 0.81% 0.79 0.71 0.76 0.763 1.11 0.006*
GGOML 0.79% 1.00 0.56 0.66 0.845 1.12 0.004*
RETML 0.93% 1.00 0.65 0.73 0.835 1.59 0.003*
PVVML 3.02% 0.90 0.71 0.75 0.851 2.08 <0.001*

Radiologist
GGORAD 7.00 0.80 0.79 0.80 0.829 1.44 0.001*
RETRAD 6.00 0.90 0.74 0.77 0.838 1.42 0.001*
CONRAD 1.50 0.80 0.76 0.77 0.820 1.88 0.001*

AUC: area under the curve; GGO: ground-glass opacity; RET: reticulation; PVV: pulmonary vessel volume; CON:
consolidation. *: p<0.05.

TABLE 4 Univariable and multivariable analysis of automated and semiquantitative scoring for the highest
tertile of each radiological abnormality for the diagnosis of graft failure (death or re-transplantation)

Univariable analysis Multivariable analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

Machine learning
NLML 0.93 (0.78–1.10) 0.37 0.96 (0.80–1.15) 0.65
HLML 0.92 (0.76–1.12) 0.40 0.90 (0.72–1.13) 0.37
GGOML 1.45 (1.12–1.88) <0.001* 1.36 (1.00–1.86) 0.05
RETML 1.25 (1.11–1.39) <0.001* 1.20 (1.05–1.37) 0.01*
PVVML 1.30 (1.14–1.48) <0.001* 1.23 (1.05–1.44) 0.01*

Radiologist
GGORAD 1.16 (1.08–1.25) <0.001* 1.14 (1.05–1.23) <0.001*
RETRAD 1.18 (1.10–1.26) <0.001* 1.17 (1.08–1.27) <0.001*
CONRAD 1.26 (1.12–1.41) <0.001* 1.16 (1.01–1.34) 0.04*

NL: normal lung; HL: hyperlucent lung; GGO: ground-glass opacity; RET: reticulation. PVV: pulmonary vessel
volume; CON: consolidation. The multivariable model was performed for each radiological variable separately,
and is adjusted for sex, chronic lung allograft dysfunction phenotype, age, native lung disease and
cytomegalovirus serostatus matching. *: p<0.05.
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FIGURE 3 Kaplan–Meier curves demonstrating allograft survival probability over time for a) RETML, b) GGOML, c) PVVML, d) RETRAD, e) GGORAD and
f) CONRAD. Tertiles of radiological abnormality are indicated (1=highest amount). RET: reticulation; GGO: ground-glass opacity; PVV: pulmonary
vessel volume; CON: consolidation.
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inflammatory group would be comprised of 16 RAS/mixed, five undefined/unclassified and 15 BOS. The
indeterminate group would be 20 BOS, four RAS/mixed and four undefined/unclassified. The hyperlucent
group would be 22 BOS and two undefined/unclassified.

Discussion
We found an excellent diagnostic performance of the machine learning tool in identifying the RAS and
mixed CLAD phenotype. Furthermore, machine learning identified hyperlucent lung in patients with BOS,
without necessitating expiratory CT. Both machine learning and radiologist scoring at the time of CLAD
onset were of prognostic importance, independent of CLAD phenotype in our multivariable model,
emphasising the importance of CT early in the evaluation of CLAD. PVVML, a biomarker unique to
machine learning, had the strongest diagnostic and prognostic performance among all variables assessed.

We investigated PVV because it was found to be a strong predictor of mortality in diffuse lung disease
[20, 23]. As a marker of total vessel volume in the lung, possible explanations for the significance of PVV
in pulmonary fibrosis include redistribution of blood flow from abnormal lung to normal lung, the
presence of arterial shunts or a dilatation of blood vessels related to increased negative pressure at
inspiration in the context of lung stiffness [20]. It is also possible that perivascular inflammatory opacity is
being classified as vessel volume by machine learning. Although PVV increases as CTTLC decreases, a
reduction in lung volumes alone does not fully account for the significance of PVV as we controlled for
CTTLC in our analyses. PVV was expressed as a proportion of CTTLC and we also added CTTLC into the
PVV multivariable model.

In a previous study, histopathological examination of explanted lungs with end-stage restrictive CLAD
revealed focal areas of capillary obliteration with a resultant decreased microvascular density, a finding that
would suggest a lower PVV in advanced CLAD [24]. However, the same authors also describe areas of
reactive microvascular proliferation among fibrosis and ectasia of small lymphatic vessels that, in our
estimation, might account for an increased PVV. In the absence of a definite histological correlate at the
onset of CLAD, the prognostic significance of increased PVV in CLAD could relate to increased negative
intrathoracic pressure at end-inspiration, particularly in those patients with restriction and lung stiffness,
and possibly the inclusion of perivascular inflammation in vessel segmentation, given that the analysis is
not capable of reliably distinguishing between a true vessel versus a perivascular opacity. However, a
further quantitative analysis of the small vessels in CLAD, both at onset and at end-stage, is warranted
given the intriguing findings of microvascular damage in lungs with restrictive CLAD or RAS [24].

Machine learning-identified hyperlucent lung is a feature associated with BOS on fully inspiratory exams
and this likely corresponds to air trapping in this cohort. Conventionally, radiologists assess for air trapping
using paired inspiratory and expiratory imaging; using this approach to diagnose BOS, BANKIER et al. [25]
describe a threshold of 32% air trapping as being 83% sensitive, 89% specific and 88% accurate. Indeed,
radiologist-assessed air trapping may be insensitive particularly if there is poor timing of the CT scan and
limited expiratory effort (supplementary figure E7). More recently, VERLEDEN et al. [26] used parametric
response mapping alongside a matched stable cohort, and found a sensitivity of 62.5% and specificity of
93.8%. With machine learning, and among a cohort of only CLAD patients, we found a cut-off of just
0.81% hyperlucent lung to be 79% sensitive, 71% specific and 76% accurate. The lower specificity in our
study is likely due to including patients with all forms of CLAD. Interestingly, patients with CLAD of a
mixed and RAS phenotype may demonstrate lesions of obliterative bronchiolitis and indeed we found
hyperlucent lung in all CLAD groups [27].

In the multivariable analysis, we found that NLML and HLML were not independently associated with graft
failure, whereas CLAD phenotype defined clinically was. Despite this limitation of HLML as a marker of
CLAD prognosis, the ability of machine learning to identify this important feature of CLAD on inspiratory
CT warrants further investigation. Foregoing expiratory CT would offer a radiation dose reduction and
improved efficiency in performing and reporting the CT studies.

Although the machine learning analysis presents unique insights in PVV and HLML quantification, the
radiologist scoring also performed well in our study. The semiquantitative radiologist scoring system in this
study was used in a similarly sized lung transplant cohort by SUHLING et al. [6] in 2016 who found that, by
combining CT findings of consolidation and reticulation with TLC, they could identify a subgroup of
patients with restrictive CLAD and poorer survival. Their cohort differed substantially from ours in that
one-third had severe traction bronchiectasis, a marker of advanced fibrosis, and CT was performed a
median of 387 days after CLAD onset. In contrast, CT was performed a median of 9.5 days after CLAD
onset in the current study and only one case had severe bronchiectasis. Furthermore, SUHLING et al. [6]
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found that ground-glass opacity was not associated with graft failure, whereas we found that it was, and
this may also relate to CT timing if ground-glass opacity is attributable to acute inflammation near the
onset of CLAD. Indeed, PHILIPPOT et al. [28] also applied the same scoring system to single lung transplant
patients and found it useful in the early detection of RAS. Neither study controlled for CLAD phenotype
in their multivariable analysis and our finding of opacities as independent predictors of graft failure
suggests that a quantitative assessment of the lung opacities, achieved through machine learning, is of
value.

Although we demonstrate a strong ability of machine learning to phenotype CLAD and its determination
of graft survival, there are several other potential uses. The quantitative data provided by machine learning
analysis may be of use in future clinical drug trials and treatment monitoring where there is a need for
reproducible biomarkers of disease. With validation, the use of an automated machine learning tool in lung
transplant studies would allow improved comparison of cohorts across centres. It should also be noted that
machine learning is sensitive to fractional volumes of lung abnormality, the optimal cut-off for HLML in
the current study being 0.81%. This finding raises the question of the ability of machine learning to detect
lung texture abnormalities in CLAD at its earliest stage, before becoming clinically evident.

Limitations of this study include the single-centre and retrospective design, although a CALIPER-based
machine learning analysis is compatible with a wide range of CT protocols. Furthermore, we were
restricted in our ability to include a larger number of patients due to the absence of archived CT thin slices
prior to 2013. Despite this, our cohort is among the largest with a comprehensive CT analysis in CLAD.
Finally, this machine learning tool was not trained on lung transplant cases and does not capture all
features of particular interest in lung transplant patients, such as pleural thickening or complications at the
bronchial anastomoses. A future machine learning tool trained on and tailored for lung transplant patients
might be of even greater value. Of course, the clinician and radiologist remain critically important in
evaluating the CT and considering the findings in the appropriate clinical context.

In conclusion, machine learning strongly discriminated between CLAD phenotypes using automated
analysis. Both radiologist and machine learning scoring were associated with graft failure, independent of
the CLAD phenotype and without using expiratory CT. Integration of machine learning into clinical use
may facilitate automated CT analysis for phenotyping and prognostication in a reliable and reproducible
manner. PVV, a biomarker unique to machine learning, was best in CLAD phenotyping and
prognostication, and warrants future investigation in this population.
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