



## *Pseudomonas aeruginosa* membrane vesicles cause endothelial barrier failure and lung injury

## Mark J. McVey<sup>1,2,3,4</sup>, Mazharul Maishan<sup>1</sup>, Anna Foley<sup>5</sup>, Razan Turki<sup>1,5</sup>, Elyse J. Roach<sup>6</sup>, Rose Deschler<sup>7</sup>, Sarah Weidenfeld<sup>7</sup>, Neil M. Goldenberg<sup>2,3,5</sup>, Cezar M. Khursigara <sup>1</sup>/<sub>0</sub><sup>6</sup> and Wolfgang M. Kuebler<sup>1,5,7,8</sup>

<sup>1</sup>Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada. <sup>2</sup>Depts of Anesthesiology and Pain Medicine and Physiology, University of Toronto, Toronto, ON, Canada. <sup>3</sup>Dept of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada. <sup>4</sup>Dept of Physics, Ryerson University, Toronto, ON, Canada. <sup>5</sup>Dept of Physiology, University of Toronto, Toronto, ON, Canada. <sup>6</sup>Dept of Molecular and Cellular Biology, Guelph University, Guelph, ON, Canada. <sup>7</sup>Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany. <sup>8</sup>Dept of Surgery, University of Toronto, ON, Canada.

Corresponding author: Wolfgang M. Kuebler (wolfgang.kuebler@charite.de)

| Check for<br>updates                                                                                                                                          | Shareable abstract (@ERSpublications)<br>Membrane vesicles released by <i>Pseudomonas aeruginosa</i> PA14 can elicit septic acute lung injury<br>due to loss of endothelial barrier integrity and inflammasome activation https://bit.ly/3gMnkPu<br>Cite this article as: McVey MJ, Maishan M, Foley A, <i>et al. Pseudomonas aeruginosa</i> membrane vesicles<br>cause endothelial barrier failure and lung injury. <i>Eur Respir J</i> 2022; 59: 2101500 [DOI: 10.1183/<br>13993003.01500-2021].<br>This single-page version can be shared freely online.                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Copyright @The authors 2022. For<br>reproduction rights and<br>permissions contact<br>permissions@ersnet.org<br>Received: 26 May 2021<br>Accepted: 4 Feb 2022 | To the Editor:<br>Sepsis is a common cause of lung hyperinflammation and barrier failure, resulting in acute respiratory<br>distress syndrome (ARDS). Despite antibiotics, mortality from bacterial sepsis increases in the developed<br>world, suggesting injurious mechanisms beyond live bacteria. In addition to bacterial toxins, membrane<br>vesicles (MVs) may present potential mechanisms of organ failure in sepsis. Bacterial MVs are<br>extracellular vesicles formed from bacterial membranes [1] that can elicit systemic inflammatory responses,<br><i>e.g.</i> by inflammasome activation [2, 3]. Here, we tested whether MVs from a relevant sepsis pathogen,<br><i>Pseudomonas aeruginosa</i> , were sufficient to cause characteristic signs of acute lung injury (ALI), the<br>preclinical analogue to ARDS, <i>in vitro</i> and <i>in vivo</i> . |