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Systematic reviews and meta-analyses (SRMAs) are very useful tools for evaluating the status of research
on a given topic in medical sciences [1, 2]. Although SRMAs are primarily used in clinical investigation,
the methodologies underlying SRMAs can also be readily used to assess extant data focused on research in
animal models of disease [3]. Indeed, the rationale for using SRMAs is the same, regardless of the field of
application, since the aim of SRMAs is to consider all available publications on a topic of interest, and to
derive conclusions from a comprehensive and integrated analysis of all existing studies deemed valid by
consensus, rather than simply enumerating the conclusions of individual articles as is common in
conventional narrative reviews. SRMAs can be particularly useful in determining whether clinical trials
that have been performed on a diagnostic or treatment procedure have generated sufficiently valid evidence
to transition that specific issue to clinical practice. Similarly, and assuming the potential limitations
imposed by inter-species or inter-strain differences, SRMAs applied to animal research publications may
be helpful in elucidating whether the data available from animal disease model publications are robust
enough to validate a mechanistic hypothesis or to justify translation into clinical research [4, 5]. This
analogy is clearly illustrated by an early classical example showing that if a SRMA of animal research data
had been conducted on the effects of nimodipine for focal cerebral ischaemia (a post hoc SRMA revealed
a lack of efficacy and unsupportive evidence), 22 clinical trials involving 6468 patients could have been
pre-emptively avoided [6].

It is also worth noting that SRMAs of disease model data in animals may offer an interesting added value.
Indeed, they can be particularly useful in providing an updated global perspective to clinicians who are not
intensely invested or interested in the specific methodological details employed by each of the basic
science publications on which the SRMA is based. However, notwithstanding their potential interest and
value, SRMAs have been scarcely applied to critically evaluate the available evidence from research in
animal models in the respiratory field [7–9]. The article by HARKI et al. [10] published in this issue of the
European Respiratory Journal is therefore a welcome addition, and the authors are commended for their
first SRMA of rodent data on a topic revolving around sleep apnoea. Specifically, the authors evaluated the
literature on intermittent hypoxia-related alterations in vascular structure and function, a timely and
important issue, with the intent to provide valuable insights into the current scientific debate on the
potential cardiovascular effects of sleep apnoea and whether they can be prevented by nasal pressure
treatment [11–20]. HARKI et al. [10] identified >5000 publications from three major databases and selected
125 papers for the meta-analysis, with most of them having been carried out in wild-type rodents (90%),
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mainly rats (79%). The most relevant findings of this SRMA were that intermittent hypoxia increased both
systolic and diastolic arterial pressures, attenuated vasodilation, and promoted endothelin-1-induced
vasoconstriction and vascular remodelling, confirming causative relationships that, given the multitude of
confounding factors, are difficult to establish in patient studies. Interestingly, HARKI et al. [10] clearly and
briefly discuss their study limitations, most of which seem to be due to the spectrum of published results
available to carry out the SRMA. Thus, it is important to further comment in more detail on two of the
main limitations that may adversely affect SRMAs similarly in clinical and experimental research.

It is well known that the robustness of the conclusions derived from any given SRMA depends on the
quantity and quality of the published data [21–23]. In this context, a recent debate has been held on the
quality of clinical data and SRMAs in the field of sleep medicine [24–26]. Regarding patient studies, a
limitation of SRMAs is that the available publications retained for analysis correspond to studies that were
designed to verify a certain hypothesis specifically posited by the authors. Since such studies aim at
reaching optimal precision when answering the question posed, the authors of individual clinical trials will
usually apply very well-defined and restrictive inclusion and exclusion criteria. However, such precision in
approach implies that the cohort under study usually excludes a considerable fraction of the real-life patient
variability that is pervasively present in clinical practice, for instance the patients who are most fragile and
difficult to treat because of their comorbidities. Therefore, while such neat inclusion/exclusion criteria are
necessary to clearly answer the hypothesis in a clinical trial, they can limit the translation of SRMAs
conclusions to the clinical arena [27]. Remarkably, the potential problem arising from inclusion/exclusion
criteria is not exclusive of patient data, but is also relevant when SRMAs are applied to animal data.

Indeed, simple decisions on the animal experiment design (equivalent to inclusion/exclusion criteria in
clinical trials) may have important consequences on whether the SRMA conclusions can be generalised, as
mentioned by HARKI et al. [10]. An important issue is that animal studies have been almost exclusively
carried out in males, with data from females being usually absent or only occasional. In this regard, it is
notable that HARKI et al. [10] report that intermittent hypoxia alters vasodilation in males, but not in
females, although there was a sex imbalance since only four of the cited studies focused on females, as
compared with 103 that exclusively included males (of note, four were studies in both sexes and in four
the sex was not reported). Such a finding is not surprising, since sex-related differential responses
concerning various biological variables have been previously identified when intermittent hypoxia has
been used as a correlate of obstructive sleep apnoea in animals [28–33]. Fortunately, this problem of sex
balance in animal research is being progressively addressed following implementation of formal policies by
funding agencies and journal editors [34–39]. Another concern is that most of the diseases for which
animal models are needed usually have increased prevalence in the elderly (e.g. sleep breathing disorders)
but the experiments are actually carried out in young animals, commonly with an age equivalent to that of
human late adolescence. Hence, it should not come as a surprise that significantly different responses
emerge in response to hypoxia depending on age [40–43]. In fact, despite the limited data currently
available, HARKI et al. [10] were able to detect in their SRMA that vascular remodelling induced by
intermittent hypoxia was reduced in aged animals. In addition to the obvious sex, age and obesity, other
“inclusion/exclusion” criteria, which may seem of minor relevance in animal models, can considerably
modulate the responses to intermittent hypoxia or sleep fragmentation, the two major disruptors in sleep
breathing disorders. For instance, environmental temperature [44–48], diet and activity [49], and presence
or absence of social interactions among animals [50–53] can considerably modify the metabolic and
immune responses, thereby modulating the consequences of the sleep breathing disorder challenges.
Moreover, the fact of choosing one type of rodent, a specific strain within mice or rats, or even truly wild
animals, modulates the immune system and the response to the experimental exposures [53–56]. As such,
it is of note that the SRMA by HARKI et al. [10] concluded that intermittent hypoxia-induced
cardiovascular remodelling occurred in mice, but not in rats, and that increases in mean arterial pressure
depend on the rat strain. These data question to what extent the narrow genetic variability of laboratory
animals, which greatly differs from the naturally wild spectrum, may limit the validity of the conclusions
derived from most animal models.

Risk of bias (e.g. selection, performance, detection, attrition and reporting biases) must be assessed when
performing SRMAs, as HARKI et al. [10] actually did using the SYRCLE approach, which is a tool
specifically designed for animal intervention studies [57]. However, there is a type of bias, known as
publication bias [58], that potentially challenges the conclusions derived from SRMAs, and is virtually
impossible to contend with. The more typical manifestation is that studies with negative results tend to be
underrepresented in the literature. For instance, when testing the effectiveness of a clinical treatment, trials
with positive results are more attractive to scientific journals since they draw more attention, press releases
and ultimately citations, which are the petrol directly or indirectly feeding most scientific publications
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either for profit or non-for-profit. Fortunately, compulsory registration of clinical trials over the past several
years has reduced the possibility that trials with negative results are ignored. However, looking at clinical
trial public registries can just inform on the trials initiated with a given aim (e.g. testing the effectiveness
of a treatment) but registries are not always updated with the conclusions and results of such trials. Since
SRMAs are carried out on the basis of the papers actually published, editorial decisions of journals can
lead to publication bias regardless of clinical trial registration requirements. This problem is similar or even
greater in the context of SRMAs focused on animal model-based research. Indeed, in this case there is no
compulsory public registry of the experiments started by researchers, and the presence of such an obvious
void suggests that registry initiatives for animal (and cell culture) research that are similar to those
currently implemented for clinical trials may be of interest and enhance the value and significance of
subsequent SRMAs. Moreover, similar to the clinical research potential publication bias, increased venues
that allow or seek publication of negative results in animal-based experiments may ultimately reduce the
current publication bias that is pervasively found in animal-based research.

We should point out that the difficulties that have been mentioned herein, namely inclusion/exclusion
criteria and publication bias, are not intrinsic limitations of SRMAs per se, but rather stem from the quality
of the available published research that is used as the basis to generate the SRMAs. Fortunately, the
adverse impact imposed by these difficulties can be progressively reduced by improving research and
publication practices. Therefore, conventional SRMAs, and also individual participant data meta-analysis
[59], should be viewed as extremely useful tools that can be used as frequently as required to evaluate and
guide research with animal models within the translational research framework. Indeed, based on the
fundamental assumption that animal research should be guided by the 3-R principles (Replacement,
Reduction and Refinement) [60], implementation of meta-analyses will not only reinforce and refine the
findings and conclusions of each of the studies, but should permit the advance of science through
formulation of additional research questions with greater certainty (figure 1).
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FIGURE 1 Ideally, research and publication on animal models of diseases must be carried out using a 3-R
approach (Replacement, Reduction and Refinement) and covering biological conditions mimicking real-life as
much as possible (left). Available published research can be analysed by different tools (centre). The level of
certainty achieved would increase from a narrative review to a systematic review and meta-analysis, and
further from a systematic review and individual meta-analysis, whereby data from individual animals are
available from the different published studies (right).
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