



## Diffusing capacity of the lung for carbon monoxide: association with long-term outcomes after lung transplantation in a 20-year longitudinal study

David Ross Darley<sup>1,2</sup>, Jin Ma<sup>3</sup>, Ella Huszti<sup>3</sup>, Rasheed Ghany<sup>1</sup>, Michael Hutcheon<sup>1</sup>, Chung-Wai Chow <sup>1</sup>, Jussi Tikkanen<sup>1</sup>, Shaf Keshavjee<sup>1</sup>, Lianne Gail Singer<sup>1,4</sup> and Tereza Martinu<sup>1,4</sup>

<sup>1</sup>Toronto Lung Transplant Program, Toronto General Hospital, University Health Network, Toronto, ON, Canada. <sup>2</sup>UNSW Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, Australia. <sup>3</sup>Biostatistics Research Unit, University Health Network, Toronto, ON, Canada. <sup>4</sup>Dept of Medicine, University of Toronto, Toronto, ON, Canada.

Corresponding author: Tereza Martinu (Tereza.Martinu@uhn.ca)



Shareable abstract (@ERSpublications)

In a cohort spanning 20 years, the  $D_{\rm LCO}$  trajectory after lung transplantation is significantly associated with long-term outcomes including chronic lung allograft dysfunction and survival. https://bit.ly/3g3mvCk

**Cite this article as:** Darley DR, Ma J, Huszti E, *et al.* Diffusing capacity of the lung for carbon monoxide: association with long-term outcomes after lung transplantation in a 20-year longitudinal study. *Eur Respir J* 2022; 59: 2003639 [DOI: 10.1183/13993003.03639-2020].

This single-page version can be shared freely online.

## Copyright ©The authors 2022. For reproduction rights and permissions contact permissions@ersnet.org

This article has supplementary material available from erj.ersjournals.com

Received: 26 Sept 2020 Accepted: 03 June 2021

## Abstract

**Rationale** The diffusing capacity of the lung for carbon monoxide corrected for haemoglobin ( $D_{\rm LCOcor}$ ) measures gas movement across the alveolar–capillary interface. We hypothesised that  $D_{\rm LCOcor}$  is a sensitive measure of injurious allograft processes disrupting this interface.

**Objectives** To determine the prognostic significance of the  $D_{LCOcor}$  trajectory on chronic lung allograft dysfunction (CLAD) and survival.

*Methods* A retrospective analysis was conducted of all bilateral lung transplant recipients at a single centre, between January 1998 and January 2018, with one or more  $D_{\rm LCOcor}$  measurements. Low baseline  $D_{\rm LCOcor}$  was defined as the failure to achieve a  $D_{\rm LCOcor}$  >75% predicted. Drops in  $D_{\rm LCOcor}$  were defined as >15% below recent baseline.

*Results* 1259 out of 1492 lung transplant recipients were included. The median (range) time to peak  $D_{\rm LCOcor}$  was 354 (181–737) days and the mean±sp  $D_{\rm LCOcor}$  was 80.2±21.2% pred. Multivariable analysis demonstrated that low baseline  $D_{\rm LCOcor}$  was significantly associated with death (hazrd ratio (HR) 1.68, 95% CI 1.27–2.20; p<0.001). Low baseline  $D_{\rm LCOcor}$  was not independently associated with CLAD after adjustment for low baseline forced expiratory volume in 1 s or forced vital capacity. Any  $D_{\rm LCOcor}$  declines ≥15% were significantly associated with death, independent of concurrent spirometric decline. Lower percentage predicted  $D_{\rm LCOcor}$  values at CLAD onset were associated with shorter post-CLAD survival (HR 0.75 per 10%-unit change, p<0.01).

**Conclusion** Low baseline  $D_{\rm LCOcor}$  and post-transplant declines in  $D_{\rm LCOcor}$  were significantly associated with survival, independent of spirometric measurements. We propose that  $D_{\rm LCOcor}$  testing may allow identification of a subphenotype of baseline and chronic allograft dysfunction not captured by spirometry. There may be benefit in routine monitoring of  $D_{\rm LCOcor}$  after lung transplantation to identify patients at risk of poor outcomes.