



## Role of angiopoietin-2 in venous thrombus resolution and chronic thromboembolic disease

Lukas Hobohm <sup>[]</sup><sup>1,2</sup>, Sebastian Kölmel<sup>3</sup>, Caroline Niemann<sup>4</sup>, Philipp Kümpers<sup>5</sup>, Valentin J. Krieg<sup>6</sup>, Magdalena L. Bochenek<sup>1,2,7</sup>, Alexander H. Lukasz<sup>5</sup>, Yvonne Reiss<sup>7,8</sup>, Karl-Heinz Plate<sup>7,8</sup>, Christoph Liebetrau<sup>7,9,10</sup>, Christoph B. Wiedenroth<sup>11</sup>, Stefan Guth <sup>[]</sup><sup>11</sup>, Thomas Münzel<sup>2,7</sup>, Gerd Hasenfuß <sup>[]</sup><sup>12,13</sup>, Philip Wenzel<sup>1,2,7</sup>, Eckhard Mayer<sup>11</sup>, Stavros V. Konstantinides <sup>[]</sup><sup>1,14</sup>, Katrin Schäfer<sup>2,7</sup> and Mareike Lankeit <sup>[]</sup><sup>1,12,15,16</sup>

<sup>1</sup>Center for Thrombosis and Hemostasis (CTH), University Medical Center, Mainz, Germany. <sup>2</sup>Dept of Cardiology, Cardiology I, University Medical Center, Mainz, Germany. <sup>3</sup>Internal Medicine and Endocrinology/Diabetes, Kantonsspital St Gallen, Sankt Gallen, Switzerland. <sup>4</sup>Clinic of Gynaecology, St Franziskus Hospital Münster, Münster, Germany. <sup>5</sup>Dept of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital Münster, Münster, Germany. <sup>6</sup>Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany. <sup>7</sup>German Cardiovascular Research Centre, partner site Rhine-Main, Mainz, Germany. <sup>8</sup>Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany. <sup>9</sup>Dept of Cardiology, Kerckhoff Clinic, Bad Nauheim, Germany. <sup>10</sup>Dept of Cardiology, Justus-Liebig University of Giessen, Giessen, Germany. <sup>11</sup>Dept of Thoracic Surgery, Kerckhoff Clinic, Bad Nauheim, Germany. <sup>12</sup>Clinic of Cardiology and Pneumology, Heart Center, University Medical Center Göttingen, Göttingen, Germany. <sup>13</sup>German Cardiovascular Research Centre, partner site Göttingen, Göttingen, Germany. <sup>14</sup>Dept of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece. <sup>15</sup>Dept of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité – University Medicine, Berlin, Germany. <sup>16</sup>German Cardiovascular Research Centre, partner site Berlin, Berlin, Germany.

Corresponding author: Mareike Lankeit (mareike.lankeit@uni-mainz.de)

| Check for<br>updates                                                                                                                                                                                                                                 | Shareable abstract (@ERSpublications)<br>These findings in patients and mouse models reveal a new role for angiopoietin-2 in the<br>pathophysiology of CTEPH, suggesting that its overexpression in pulmonary endothelium may<br>contribute to defective angiogenesis and persistent vascular occlusion https://bit.ly/3gotczC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                      | <b>Cite this article as:</b> Hobohm L, Kölmel S, Niemann C, <i>et al.</i> Role of angiopoietin-2 in venous thrombus resolution and chronic thromboembolic disease. <i>Eur Respir J</i> 2021; 58: 2004196 [DOI: 10.1183/13993003.04196-2020].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                      | This single-page version can be shared freely online.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Copyright ©The authors 2021. For<br>reproduction rights and<br>permissions contact<br>permissions@ersnet.org<br>This article has supplementary<br>material available from<br>erj.ersjournals.com<br>Received: 14 Nov 2020<br>Accepted: 10 April 2021 | Abstract<br>Background Defective angiogenesis, incomplete thrombus revascularisation and fibrosis are considered<br>critical pathomechanisms of chronic thromboembolic pulmonary hypertension (CTEPH) after pulmonary<br>embolism. Angiopoietin-2 (ANGPT2) has been shown to regulate angiogenesis, but its importance for<br>thrombus resolution and remodelling is unknown.<br><i>Methods</i> ANGPT2 plasma concentrations were measured in patients with CTEPH (n=68) and acute<br>pulmonary embolism (n=84). Tissue removed during pulmonary endarterectomy (PEA) for CTEPH was<br>analysed (immuno)histologically. A mouse model of inferior vena cava ligation was used to study the<br>kinetics of venous thrombus resolution in wild-type mice receiving recombinant ANGPT2 <i>via</i> osmotic<br>pumps, and in transgenic mice overexpressing ANGPT2 in endothelial cells.<br><i>Results</i> Circulating ANGPT2 levels were higher in CTEPH patients compared to patients with idiopathic<br>pulmonary arterial hypertension and healthy controls, and decreased after PEA. Plasma ANGPT2 levels<br>were elevated in patients with pulmonary embolism and diagnosis of CTEPH during follow-up.<br>Histological analysis of PEA specimens confirmed increased ANGPT2 expression, and low levels of |
|                                                                                                                                                                                                                                                      | phosphorylated TIE2 were observed in regions with early-organised pulmonary thrombi, myofibroblasts<br>and fibrosis. Microarray and high-resolution microscopy analysis could localise ANGPT2 overexpression<br>to endothelial cells, and hypoxia and transforming growth factor-β1 were identified as potential stimuli.<br>Gain-of-function experiments in mice demonstrated that exogenous ANGPT2 administration and transgenic<br>endothelial ANGPT2 overexpression resulted in delayed venous thrombus resolution, and thrombi were<br>characterised by lower TIE2 phosphorylation and fewer microvessels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

*Conclusion* Our findings suggest that ANGPT2 delays venous thrombus resolution and that overexpression of ANGPT2 contributes to thrombofibrosis and may thus support the transition from pulmonary embolism to CTEPH.