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Supplementary Website 

We have generated a supplementary website (https://yale-p2med.github.io/SARC_BAL/) for this 

article from which data, analytical codes, paper supplement, results of supervised analysis, results of 

unsupervised analysis can be downloaded. 

Sample preparation and RNA sequencing 

All patients involved in this study have signed a consent to participate in this study in accordance with 

institutional IRB protocols (Figure S1). Total RNA was extracted from BAL samples using Qiazol 

following Qiagen’s miRNeasy protocol (Qiagen 217004) and using QiaCube. RNA quantity and quality 

was assessed using NanoDrop (Thermo Scientific) and TapeStation 2200 (Agilent). RNA Integrity 

Number (RIN) over 6.5 and yield over 1ug of total RNA were criteria for acceptable quality to be 

submitted for sequencing (Table S1 and Supplemental Table E1). cDNA libraries were made from 1ug 

of total RNA upon Poly-A selection using Dynabeads® mRNA DIRECT™ Micro Purification Kit (Ambion 

61021) and fragmentation using the AB Library Builder™ System (Life Technologies 4463592) with the 

Ion Total RNA-Seq Kit for AB Library Builder™ System (Life Technologies 4482416).  The cDNA was 

amplified and barcoded using the Ion Xpress™ RNA-Seq Barcode 1-16 Kit (Life Technologies 

4475485). cDNA was loaded onto Ion PI™ Chip Kit v2 BC (Life Technologies 4484270) using the Ion 

Chef™ System (Life Technologies 4484177) with the Ion PI™ IC 200 Kit (Life Technologies 4488377). 

Sequencing was performed using Ion Proton™ System for Next-Generation Sequencing (Life 

Technologies 4476610) using the Ion PI™ IC 200 Kit (Life Technologies 4488377) to obtain RNA-Seq 

depth of ~ 30 million single-end reads/sample with an average read length of 150bps. Successfully 

sequenced samples were samples whose cDNA libraries passed quality control and had depth of 

sequencing of ~ 30 million single-end reads/sample. 

https://yale-p2med.github.io/SARC_BAL/
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    Table S1. Sample filtering using RIN and RNA quality metrics. 

STAGE (PHENOTYPE) 
# 

SUBJECTS 

# BAL 
SAMPLES 
with RNAs 

# BAL 
SAMPLES 
PASSING 

QC 

# 
SUCCESSFULLY 

SEQUENCED 

TOTAL, n 318 261 219 215 

Non-acute, Stage I, 
untreated 

36 34 26 26 

Acute Sarcoidosis, 
untreated 

16 16 15 14 

Remitting, untreated 
54 48 44 42 

Stage II-III, untreated 
50 48 40 42 

Stage II-III, treated 
49 45 36 36 

Stage IV, untreated 
32 18 13 13 

Stage IV, treated 
46 23 19 19 

Multi-organ 
35 29 26 24 
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Figure S1: Consort figure. 
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Sequencing Data Preprocessing 

Data Quality Assessment 

The Torrent Suite™ Software (V5.0.5) was used to generate the raw sequencing bam file without 

alignment. These bam files were further converted into fastq files using the bam2fastx component from 

tophat2 (V2.0.12). The pre-alignment metrics provided in the Torrent Suite™ Software run reports, 

including bead loading, Ion Sphere™ Particle (ISP) density, total number of reads, filtering numbers, 

and mean read length. We used these quality thresholds provided by the company to filter out low 

quality sequencing runs. The samples in these low-quality sequencing runs were sequenced again.  

The raw fastq files were assessed for sequencing reads quality using FastQC(1) to identify possible 

sequencing adapter or polymer contamination. The distribution of the base quality score along the read 

positions was also considered to control the quality. For this data set, all samples that pass the 

sequencing run filtering based on the sequencing run report passed the FastQC quality control.  

Mapping and FPKM Calculation 

The sequencing reads in the fastq files were mapped onto the human genome (UCSC hg38) using a 

two-stage mapping strategy suggested by the manufacturer. In the first stage, all raw reads were 

mapped to hg38 using STAR (2) with gene annotation and the --b2-very-sensitive option. The 

unmapped reads from the first stage were further mapped to hg38 using bowtie2 (3) with local alignment 

and the –very-sensitive-local option.  Cufflinks (4) was used to calculate the Fragments Per Kilobase 

of transcript per Million mapped reads (FPKMs) as the estimated gene expression levels.  

Data Cleaning and Batch Effect Assessment 

The principal component analysis (PCA) was applied to identify potential outlying sequencing reactions. 

There were 240 sequencing reactions for 215 samples, among which 15 reactions were identified as 

outliers by PCA and thus removed from further analysis. Among these 15 reactions, 11 of them also 
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had low mapping rate, low numbers of expressed genes, and low numbers of mapped reads. For the 

other 4 reactions, 3 of them were shown to cluster with the PBMC samples instead of the other BAL 

samples, indicating that they were actually PBMC samples mislabeled as BAL samples. After the outlier 

removal, we had 225 high quality sequencing reactions in total, which included 31 repeated reactions 

from 15 BAL samples. Among the repeated reactions, we kept the one with comparable number of 

mapped reads to the other samples (~30 million single-end reads/sample). If multiple replicates 

qualified, we kept the reaction with the highest mapping rate. After this cleaning, we kept 209 

sequencing reactions for 209 unique BAL samples. 

In addition to data cleaning, PCA was also used to examine the data for possible batch effect due to 

multiple technical factors including sequencing date, sample collection centers, and the RNA integrity 

number (RIN).  The batch effect assessment was done mainly using two ways: data visualization and 

the sample-sample PCA distance. To examine the effect of the sample collection center, we visualized 

the data using the PCA projection plot and labeled the samples based on their sample collection centers 

(Figure S2a). For the sequencing date and the RNA integrity number (RIN), we calculate the Euclidean 

distance between any two samples using the top 3 PCs and plotted this distance against the number 

of days in differences in their sequencing date and the difference in their RINs, respectively (Figure 

S2b c). None of these visualizations showed significant effect of these three technical factors so we 

proceeded to downstream analysis without any data adjustment for these technical factors. 
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Figure S2: Technical effect examination of a). sample collection center, b). sequencing date and c). 

RNA integrity number.  

 

Supervised Analysis 

The supervised analysis identified gene signatures associated with 24 clinical traits (age, 

gender, race, FVC, FVC% predicted, FEV1, FEV1% predicted, DLCO, DLCO% predicted, FEV1/FVC 

ratio, bronchial wall thickening, bronchiectasis severity, ground glass, honeycombing, reticular 
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abnormality, traction bronchiectasis, mediastinal lymphadenopathy, hilar lymphadenopathy, Scadding, 

total BAL cell count, macrophage %, eosinophil %, lymphocyte % and neutrophil %) using non-

parametric test. The Wilcoxon Rank Sum test and Kruskal-Wallis test were used for categorical clinical 

traits with two categories and more than two categories, respectively. The Spearman’s Rho test was 

used for continuous clinical traits. The false discovery rate (FDR) was calculated to control for multiple 

testing error. Genes with an FDR<0.05 were defined to be the significant associated genes. When no 

genes achieve this global significance, genes with a fold change (FC) >2 and a p value<0.05 were 

considered as significant. 

Scadding staging, PFTs% predicted, age, CT scan features with severity measurement and BAL 

cell differentials were considered as continuous. Race, gender, sex and CT scan features without 

severity measurement were considered as categorical. For disease severity, Scadding stage II, III and 

IV were compared to Scadding stage I separately. Similarly, all the 8 clinically defined phenotype 

groups were also compared to the non-acute stage I group separately. For PFTs% predicted (FEV1% 

predicted, DLCO% predicted, FVC% predicted), samples with PFT% predicted higher than 80% were 

compared to those from 50% to 80%. In addition, patients with obstructive lung disease (FEV1/FVC 

ratio < 70%) were compared to those with restrictive lung disease (FEV1/FVC ratio >70% and FVC% 

predicted<80%). These separate comparisons were conducted using Wilcoxon Rank Sum test. The 

detailed results and the actual gene lists can be found on our supplementary website (https://yale-

p2med.github.io/SARC_BAL). The summary of the globally significant genes is presented in the 

Supplemental Table E2.  This analysis is not adjusted for cell differentials. 

The total number of significant genes associated with each clinical trait as well as the overlap 

between each two clinical traits is shown in Figure 2a. For the clinical traits included in the analysis, the 

percentage of missing values was very low (<3%). Entries on diagonal show the total number of genes 

significantly associated with each clinical trait and the numbers of positively (followed by +) and 

negative (followed by -) correlated genes for the same clinical trait. Off the diagonal, each entry 

https://yale-p2med.github.io/SARC_BAL
https://yale-p2med.github.io/SARC_BAL
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describes the total number of genes significantly associated with both given clinical traits and the 

number of genes with the described correlation directions for trait in the row and column in the 

parentheses, respectively. The GeneGo Metacore (Thomson Reuters) was applied to the lists of 

significant genes to identify significant (FDR<0.05) enriched pathways (Figure 2b). The detailed results 

and the actual gene lists can be found on our supplementary website (https://yale-

p2med.github.io/SARC_BAL). In Figure 2b, genes significantly associated with each clinical trait are 

represented by bars on the left with the length of each bar proportionate to the number of genes. These 

genes were further divided into positively and negatively correlated genes represented by bars in the 

middle with purple bars for negative correlation and yellow bars for positive correlation. The lengths of 

these bars are also proportionate to the number of corresponding genes. Each set of negatively or 

positively correlated genes was further connected to pathways (represented by bars on the right) that 

were significantly (FDR<0.05) enriched for genes in the given set. Only the top 5 significant (FDR<0.05) 

pathways with at least 3 overlapping genes are shown.  

Unsupervised Analysis 

The unsupervised analysis of the data consists of two parts. In the first part, we applied the 

WGCNA(5) to identify gene modules and assess their correlation with the following clinical traits: 

demographics, PFTs, CT scan variables, phenotypes, treatment and BAL cell differentials. In the 

second part, we chose 5 gene modules that had significant correlation (p value<0.05) with highest 

number of clinical traits. Genes from each module were used to cluster the patients into subgroups 

using K-means clustering (Figure 4). Among the identified clusters, the two extreme clusters with the 

largest differences in their gene expression profiles shown in Figure 4 were compared for all patient 

characteristics collected under GRADS study protocol for a better understanding of the clinical 

relevance for these modules (Supplemental Table E3). Chi-square test and Wilcoxon rank sum test 

were used to assess the significance for categorical and continuous patient characteristics, 

respectively, amongst the clusters for chosen gene modules. The MetaCoreTM of GeneGO, Inc. was 

https://yale-p2med.github.io/SARC_BAL
https://yale-p2med.github.io/SARC_BAL
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applied to identify significant enriched pathways for each gene module identified by the unsupervised 

analysis.  

 

WGCNA Analysis 

Identifying outliers  

We applied the weighted gene co-expression network analysis (WGCNA) to the 209 BAL samples 

using the WGCNA R package (5). Genes expressed (FPKM>0.01) in less than 10% of the 209 samples 

were also removed before the WGCNA analysis, which kept 22,307 genes for WGCNA analysis. The 

threshold chosen for the gene expression represents the minimum FPKM level that could be robustly 

detected by the sequencing protocol in this dataset. Since WGCNA results can be sensitive to outliers, 

we did hierarchical clustering of all the 209 samples using the 22,307 genes to identify possible outliers 

for the WGCNA analysis, which showed that there are potentially 6 branches in the tree, including 8 

samples, that could have big impact on the WGCNA results (Figure S3). To decide exactly which 

samples to exclude, we applied WGCNA with trimming of 0, 1, 2, 3,…, 6 branches from the top of the 

Figure S3: Hierarchical clustering tree of all 209 samples to identify potential outliers for the 
WGCNA analysis. 
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clustering tree and compared their clustering results (Figure S4). The comparison showed that all 6 

branches have heavy impact on the WGCNA results and thus we excluded all 8 samples from further 

WGCNA analysis.  

Correlating gene modules with clinical traits 

In total, the WGCNA analysis identified 48 gene modules. The correlation between the eigen gene of 

these modules and part of the clinical traits collected under the GRADS protocol is shown in Figure 

Figure S4: Comparison of the clustering results by trimming 0, 1, 2, …, 6 branches from the top of 
the clustering tree in Figure S3. The dendrogram on top shows the hierarchical clustering tree of all 
genes by WGCNA analysis. The 7 color bars on bottom show the clustering results of all these 
genes after trimming off a given number of outliers (left of the color bars) in the hierarchical 
clustering tree of samples in Figure S3. Within each color bar, each color represents one identified 
gene module. The comparison between different color bars showed that when we trimmed >=8 
outliers (the leftmost 8 samples in the hierarchical clustering tree in Figure S3), the clustering results    
became stable, justifying the need to remove 8 outliers which is consistent with observations from 
Figure S3. 
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S5. The Modules 1, 4, 18, 33 and 47 were chosen for further clustering analysis due to their significant 

correlation (p value<0.05) with the highest number of clinical traits or unique combination of the clinical 

traits. The priority was given to the modules with a largest number of genes in the module. This analysis 

was not adjusted for demographics, smoking, cell differentials or specific treatment because none of 

these had strong association with our chosen gene modules. The distribution of treatment type and the 

time of last treatment can be found in Table S2.  

Table S2. Distribution of the treatment type and the time of last treatment in GRADS cohort. 

Systematic corticorsteroids 
Treatment Currently 

taking 
Within last 90 
days but not 

currently 

Past but not 
within last 90 

days 

Never 

Prednisone 32 (15.5%) 21 (10.1%) 94 (45.4%) 60 (29.0%) 

Medrol 0 (0%) 1 (0.5%) 9 (4.3%) 197 (95.2%) 

Dexamethasone 0 (0%) 0 (0%) 8 (3.9%) 199 (96.1%) 

Immune Suppressive Agents 
Treatment Currently 

taking 
Within last 90 
days but not 

currently 

Past but not 
within last 90 

days 

Never 

Adalimumab (Humira) 
 

5 (2.4%) 1 (0.5%) 4 (1.9%) 197 (95.2%) 

Azathioprine (Imuran) 
 

5 (2.4%) 1 (0.5%) 6 (2.9%) 195 (94.2%) 

Chlorambucil (Leukeran) 
 

0 (0%) 0 (0%) 1 (0.5%) 206 (99.5%) 

Colchicine 1 (0.5%) 3 (1.4%) 0 (0%) 203 (98.1%) 

Cyclophosphamide (Cytoxan)  0 (0%) 0 (0%) 2 (1.0%) 205 (99.0%) 

Cyclosporine 
(Gengraf,Neoral,Sandimmune)  

0 (0%) 0 (0%) 3 (1.4%) 204 (98.6%) 

Etanercept (Enbrel)  0 (0%) 0 (0%) 3 (1.4%) 204 (98.6%) 

Hydroxychloroquine  

(Plaquinil)  
13 (6.3%) 3 (1.4%) 17 (8.2%) 174 (84.1%) 

Infliximab (Remicade)  2 (0.9%) 13 (6.3%) 0 (0%) 192 (92.8%) 

IVIG  0 (0%) 0 (0%) 1 (0.5%) 206 (99.5%) 

Leflunamide (Arava)  2 (1.0%) 1 (0.5%) 4 (1.9%) 200 (96.6%) 

Methotrexate (Rheumatrex)  28 (13.5%) 4 (1.9%) 28 (13.5%) 147 (71.1%) 

Mycophenolate mofitil 
(CellCept)  

7 (3.4%) 10 (4.8%) 0 (0%) 190 (91.8%) 

Pentoxyfiline (Trental)  3 (1.4%) 204 (98.6%) 0 (0%) 0 (0%) 

Antibiotics 

Treatment Currently 
taking 

Within last 90 
days but not 

currently 

Past but not 
within last 90 

days 

Never 

Augmentin  0 (0%) 154 (74.4%) 47 (22.7%) 6 (2.9%) 

Avelox  0 (0%) 0 (0%) 16 (7.7%) 191 (92.3%) 
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Azithromycin  0 (0%) 15 (7.2%)  62 (30.0%) 130 (62.8%) 

Bactrim DS  1 (0.5%) 4 (1.9%)   45 (21.8%) 157 (75.8%) 

Ciprofloxacin  0 (0%) 3 (1.4%) 49 (23.7%) 155 (74.9%) 

Clarithromycin  0 (0%) 1 (0.5%) 16 (7.7%) 190 (91.8%) 

Clindamycin  0 (0%) 0 (0%) 16 (7.7%) 191 (92.3%) 

Doxycycline  1 (0.5%)    4 (1.9%) 44 (21.3%) 158 (76.3%) 

INH  0 (0%) 0 (0%) 4 (1.9%) 203 (98.1%) 

Levaquin  0 (0%) 3 (1.5%) 29 (14.0%) 175 (84.5%) 

Minocycline  0 (0%) 0 (0%) 9 (4.3%) 198 (95.7%) 

Pyrazinamide  0 (0%) 0 (0%) 2 (1.0%) 205 (99.0%) 
Rifampin 0 (0%) 0 (0%) 2 (1.0%) 205 (99.0%) 

Reflux 
Treatment Currently 

taking 
Within last 90 
days but not 

currently 

Past but not 
within last 90 

days 

Never 

Aciphex (rabeprazole) 1 (0.5%) 1 (0.5%) 6 (2.9%) 199 (96.1%) 
Nexium (esomeprazole)  5 (2.4%) 1 (0.5%)  38 (18.4%) 163 (78.7%) 
Prevacid (lansoprazole)  4 (1.9%) 2 (1.0%) 31 (15.0%) 170 (82.1%) 
Prilosec (omeprazole)  37 (17.9%) 10 (4.8%) 40 (19.3%) 120 (58.0%) 

Protonix (pantoprazole)  7 (3.4%) 11 (5.3%) 0 (0%) 189 (91.3%) 

H2 Blockers 
Treatment Currently 

taking 
Within last 90 
days but not 

currently 

Past but not 
within last 90 

days 

Never 

Axid (nizantidine)  0 (0%) 0 (0%) 1 (0.5%) 206 (99.5%) 
Pepcid (famotidine)  2 (1.0%) 4 (1.9%) 39 (18.8%) 162 (78.3%) 
Zantac (ranitidine)  10 (4.8%) 6 (2.9%) 47 (22.7%) 144 (69.6%) 

Inhale Steroids 
Treatment Currently 

taking 
Within last 90 
days but not 

currently 

Past but not 
within last 90 

days 

Never 

Aerobid  0 (0%) 0 (0%) 2 (1.0%) 205 (99.0%) 
Advair  17 (8.2%) 8 (3.9%) 53 (25.6%) 129 (62.3%) 

Azmacort  0 (0%) 0 (0%) 10 (4.8%) 197 (95.2%) 
Flovent  5 (2.4%) 4 (1.9%) 42 (20.3%) 156 (75.4%) 

Pulmicort  4 (1.9%) 20 (9.7%) 0 (0%) 183 (88.4%) 
Serevent  1 (0.5%) 8 (3.8%) 0 (0%) 198 (95.7%) 

QVAR  4 (1.9%) 12 (5.8%) 0 (0%) 191 (92.3%) 
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Figure S5: Heatmap showing the correlation of the 48 identified gene modules and the given clinical 

traits including the demographics, PFTs, CT scan features, cell differentials and the SCADDING 

staging. 
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Cluster Analysis using Chosen Modules 

For each of the 5 chosen modules, we applied K-means to cluster patients using its member genes 

only. The optimal number of clusters were chosen based on data visualization using heatmaps and 

multiple internal clustering criteria calculated by the Nbclust R package including the Dunn Index, the 

Silhouette Index, the Calinski and Harabasz Index and the Connectivity. The clinical relevance of these 

identified clusters or molecular endotypes was further evaluated by correlating the clustering results to 

all other 2,289 clinical traits collected under the GRADS protocol, including 204 environmental factors. 

The Chi-square test and the Kruskal-Wallis test were used when correlating the clustering results to 

categorical and continuous patient characteristics, respectively. The summary of this analysis and 

results for each identified cluster is presented in the Supplemental Table E3. 

Validation Analysis 

Freiburg Cohort 

We validated our findings using a microarray expression dataset from an independent cohort of 

Sarcoidosis patients from Freiburg, Germany. The consents were collected following institutional IRB 

protocols. Bronchoscopy with bronchoalveolar lavage was performed in these patients to obtain the 

BAL cells. The gene expression profile of these BAL cells was quantified using the Affymetrix Human 

Gene 1.0 ST Arrays. The raw data was quantile normalized using the affy R package. Principal 

component analysis was conducted which found no outlier samples. All the 50 samples were processed 

in the same batch on the same day so there is no batch effect. In total, this dataset recruited 50 

sarcoidosis patients. There were 12 clinical traits recorded in both Freiburg and GRADS cohorts 

including Scadding staging, age, gender, PFTs, PFTs% predicted and BAL cell differentials. We were 

unable to obtain any CT imaging features in the Freiburg cohort and therefore these features were not 

validated using GRADS cohort. The PFTs% predicted values in GRADS cohort were calculated using 

the Hankinson’s race specific reference equations (6). In Freiburg cohort, these values were 

determined using the GLI reference equations (7). Our validation analysis is impacted by this difference 
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because the PFTs% predicted values were not directly compared for validation. Instead, we calculated 

the correlation of genes and gene modules with FVC% predicted and FEV1% predicted in each cohort 

separately and compared these correlations between the two cohorts. In addition, we assessed the 

correlations and associations using non-parametric approaches including Spearman correlation and 

Wilcoxon Rank Sun test, which are robust to such difference. 

 

Validating the WGCNA results 

To validate the novel molecular endotypes of sarcoidosis defined in the GRADS cohort, we cluster the 

patients in the Freiburg cohort using genes from each of the 5 chosen gene modules individually. The 

two extreme clusters (indicated in column names of Table 2 and visualized in Figure 4) were compared 

for each of the 12 overlapping clinical traits in Freiburg cohort, which can be considered as one type of 

association between the clustering results or molecular endotypes with the clinical traits. This 

correlation was compared between the GRADS and the Freiburg cohorts for validation in Table 2. To 

assess the significance of validation, we conducted hypergeometric test on the overlap of the results 

between the two cohorts in Table 2. The p values can be round in the column title of Table 2. Due to 

the small number of overlapping features (12) which corresponds to a small sample size for the 

hypergeometric test, we defined endotypes with a less stringent threshold (p<0.1) as significantly 

validated.  

 To remove and examine the effect of cell differentials on our validation results, we adjusted the 

gene expression data in GRADS and Freiburg cohorts using a linear regression model to remove the 

BAL cell differential effect. The adjusted gene expression was used to cluster patients in both cohorts 

in the same way as the unadjusted gene expression data. Clinical traits significantly associated with 

the identified patient clusters were also identified in both cohorts and compared for validation again in 

the same way as the unadjusted gene expression data. The validation results using adjusted data 
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(Table S3) showed that modules 47, 4, 18, and 1 were validated (hypergeometric test p<0.05), 

indicating the robustness of our validation to BAL cell differentials of these modules.  

In addition, the significant associated clinical traits in the unadjusted data in Table 2 disappeared 

after the data adjustment for most endotypes except for the endotype of gender and PFT (basal). This 

suggests that there is a correlation between important clinical traits of Sarcoidosis and BAL cell 

differentials, which is consistent with the fact that BAL cell differentials are also indicative of disease 

severity. Therefore, by removing the cell differential effect on gene expression, we also removed the 

effect of clinical traits important to Sarcoidosis in the expression data. The BAL differentials should be 

considered as disease relevant effects instead of technical effects to avoid removing important disease 

effect.    

Validating the supervised analysis results  

We also applied the same supervised analysis to the 12 overlapping clinical traits that are available in 

both GRADS and Freiburg cohorts. For each trait, the two sets of identified associated genes were 

compared between the two cohorts and the significance of overlap was assessed using chi-square test. 

In this analysis, due to the small sample size of Freiburg cohort, we consider genes with a nominal p 

value<0.05 as significant genes in each cohort and only genes identified in both cohorts with the same 

association direction (both negatively or positively correlated) in the two cohorts were considered as 

overlapping genes in this analysis. We found that genes associated with Scadding, Neutrophil %, 

Lymphocypte %, FVC, FVC% predicted, FEV1% predicted and FEV1/FVC ratio from the two cohorts 

significantly overlapped (Table S4).  
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Table S3. Comparison of each endotype's association with the 12 overlapping clinical traits in 
GRADS and Freiburg cohorts. The p values in the column titles assess the significance of the 
validation based on the hypergeometric test.  

 
Module 47 

Gender module  
(p<0.01) 

Module 4 
Hilar 

Lymphadenopathy 
and Acute 

Lymphocytic 
Inflammation   

(p<0.01)  

Module 33 
Multiorgan 

involvement with 
increased immune 

response 
(p=1) 

Module 18 
Chronic 

sarcoidosis 
(p<0.01) 

Module 1 
Extraocular organ 
involvement and 
PI3K activation 

(p<0.01) 

 
GRADS 
(A vs B) 
P value 

Freiburg 
(A vs B) 
P value 

GRADS 
(B vs C) 
P value 

Freiburg 
(B vs C) 
P value 

GRADS 
(C vs D) 
P value 

Freiburg 
(B vs C) 
P value 

GRADS 
(C vs D) 
P value 

Freiburg 
(A vs C) 
P value 

GRADS 
(A vs B) 
P value 

Freiburg 
(B vs C) 
P value 

SCADDING 0.05 0.11 0.07 0.14 0.63 0.18 0.08 0.22 0.32 0.51 

AGE 0.98 0.59 0.38 0.56 0.79 0.29 0.05 0.31 0.06 0.60 

GENDER 5.0x10-4 5.0x10-4 0.68 1.00 1.00 0.68 0.51 0.42 0.36 0.77 

MACROPHAGE 0.70 0.05 0.40 0.14 4.6x10-4 0.83 0.68 0.72 0.40 0.55 

LYMPHOCYTES 0.71 0.05 0.33 0.16 2.4x10-4 0.81 0.75 0.91 0.30 0.55 

NEUTROPHILS 0.24 0.47 0.71 0.79 0.12 0.71 0.60 0.78 0.84 0.11 

EOSINOPHILS 0.73 0.84 0.14 0.64 0.96 0.93 0.69 0.25 0.42 0.35 

FVC 2.4x10-13 3.0x10-3 0.24 0.97 0.26 1.00 0.12 0.82 0.70 0.66 

FEV1 2.0x10-8 8.0x10-3 0.68 0.92 0.65 0.65 0.21 0.85 0.41 0.90 

FVC% predicted 0.92 0.14 0.70 0.54 0.32 0.15 0.04 0.98 0.26 0.60 

FEV1% predicted 0.92 0.75 0.58 0.58 0.41 0.18 0.21 0.60 0.11 0.86 

FEV1/FVC ratio 0.69 0.03 0.15 0.46 8.6x10-3 0.51 0.45 0.29 0.36 0.32 

 

Table S4. Validation of supervised analysis for the 10 
overlapping clinical traits between GRADS and Freiburg cohorts. 

Traits 

# of 
associated 

genes 
(GRADS) 

# of 
associated 

genes 
(Freiburg) 

# of 
overlapping 

genes 

Chi-square 
p value 

SCADDING 2,394 1,682 431 1.2x10-73 

AGE 1,373 556 26 0.05 

GENDER 1,075 409 14 0.10 

Macrophage % 3,487 445 89 0.15 

Eosinophil % 2,674 492 67 0.87 

Neutrophil % 2,420 755 72 0.04 

Lymphocyte % 5,310 300 31 3.4x10-10 

FVC% predicted 2,612 622 16 7.3x10-15 

FEV1% predicted 3,243 348 39 1.5x10-2 

FEV1/FVC ratio 1,928 375 20 6.4x10-3 
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Genes associated with BAL macrophage and eosinophil differentials 

Genes increasing with increased macrophage fraction in BAL  

Among genes most associated (Spearman’s rho > 0.2, FDR < 0.05) with increased macrophage 

fraction were the known alveolar macrophage markers SIGLEC11, ANXA1, ALOX5, CXCL5, ITGA5, 

LRP1, TREM, IRS2. Interestingly PECAM1, a known macrophage marker was among the most 

associated genes (Spearman’s rho 0.36, FDR <0.05) with increased macrophage fraction, potentially 

reflecting monocyte differentiation into macrophages and modulation of macrophage function  (8). 

Similar to genes associated with lymphocyte differential, genes associated with decreased macrophage 

fraction overlapped with genes associated with increased Scadding stage (71), hilar lymphadenopathy 

(213), and bronchial wall thickening (254), but they also overlapped with genes associated with 

increased traction bronchiectasis (28) and reticular abnormalities (71) (Figure 2a) potentially reflecting 

unique transcriptional programs in macrophages in lung fibrosis. Among the overlapping decreased 

genes were SLC40A, PLXNC1, and CMKLR1 known to be involved in initiation and resolution of 

inflammation (9, 10). Some of the functional associations are most informative when looked at together 

(Figure 2b). The increase in BAL macrophages fraction was associated with an increase in 

development and fibrosis related pathways such as PI3K/AKT, MAPK, BMP7 and K-RAS signaling 

(Figure 2b, supplementary website).  

 

Genes decreasing with increase in eosinophil fraction in BAL are associated with increase in 

airway thickness 

Mild increases in BAL eosinophil counts have been reported in progressive sarcoidosis (11). In 

our cohort, the BAL eosinophil fraction has an average of 0.24% and range from 0% to 5.5%. Out of 

115 genes associated with BAL eosinophil fraction, 27 genes (9 positively and 18 negatively) were 

correlated with bronchial thickening and 10 were negatively correlated with reticular abnormality. 

CAMP, IRS2, ST3GAL2, SPIRE2, and FHL1 were negatively correlated with eosinophil counts, 
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bronchial wall thickening and reticular abnormality. Although correlation between bronchial wall 

thickening and the eosinophil counts had marginal significance (p value= 0.056 and Spearman 

rho=0.135) in our data, common negatively correlated genes such as CAMP and IRS2 were identified. 

CAMP was previously shown to be decreased in severe sarcoidosis (12). Decrease in IRS2 led to 

pulmonary inflammation and accumulation of eosinophils in allergic lung inflammation and remodeling 

(13).   



Table S5. Breakdown of patients based on PFTs% predicted severity. 

PHENOTYPE GROUPS 1. MULTIORGAN 
2. NON ACUTE 

STAGE I 
UNTREATED 

3. STAGE II-III 
TREATED 

4. STAGE II-III 
UNTREATED 

5. STAGE IV 
TREATED 

6. STAGE IV 
UNTREATED 

7. ACUTE 
UNTREATED 

8. 
REMITTING 

UNTREATED 

TOTAL, n 23 25 34 42 19 12 14 40 

FEV1% PRED severity 
Mild, n (%) 
Moderate, n (%) 
Moderately severe, n (%) 
Severe, n (%) 
Very severe, n (%) 
NA, n (%) 

 
21 (91.3%) 

2 (8.7%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

 
19 (76.0%) 
3 (12.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

3 (12.0%) 

 
22 (64.7%) 
5 (14.7%) 
5 (14.7%) 
2 (5.9%) 
0 (0.0%) 
0 (0.0%) 

 
33 (78.6%) 
5 (11.9%) 
1 (2.4%) 
0 (0.0%) 
0 (0.0%) 
3 (7.1%) 

 
7 (36.8%) 
7 (36.8%) 
2 (10.5%) 
3 (15.8%) 
0 (0.0%) 
0 (0.0%) 

 
9 (75.0%) 
0 (0.0%) 
1 (8.3%) 

2 (16.7%) 
0 (0.0%) 
0 (0.0%) 

 
12 (85.7%) 

0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

2 (14.3%) 

 
38 (95.0%) 

1 (2.5%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
1 (2.5%) 

FVC% PRED severity 
Mild, n (%) 
Moderate, n (%) 
Moderately severe, n (%) 
Severe, n (%) 
Very severe, n (%) 

    NA, n (%) 

 
23 (100%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

 
20 (80.0%) 

2 (8.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

3 (12.0%) 

 
26 (76.5%) 

3 (8.8%) 
4 (11.8%) 
1 (2.9%) 
0 (0.0%) 
0 (0.0%) 

 
37 (88.1%) 

1 (2.4%) 
1 (2.4%) 
0 (0.0%) 
0 (0.0%) 
3 (7.1%) 

 
11 (57.9%) 
7 (36.8%) 
1 (5.26%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

 
9 (75.1%) 
1 (8.3%) 
1 (8.3%) 
1 (8.3%) 
0 (0.0%) 
0 (0.0%) 

 
12 (85.7%) 

0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 

2 (14.3%) 

 
39 (97.5%) 

0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
1 (2.5%) 

DLCO% PRED severity 
Mild, n (%) 
Moderate, n (%) 
Severe, n (%) 

    NA, n (%) 

 
21 (91.3%) 

2 (8.7%) 
0 (0.0%) 
0 (0.0%) 

 
21 (84.0%) 

2 (8.0%) 
0 (0.0%) 
2 (8.0%) 

 
21 (61.8%) 
8 (23.5%) 
4 (11.8%) 
1 (2.9%) 

 
37 (88.1%) 

2 (4.8%) 
0 (0.0%) 
3 (7.1%) 

 
14 (73.7%) 
5 (26.3%) 
0 (0.0%) 
0 (0.0%) 

 
9 (75.1%) 
1 (8.3%) 
1 (8.3%) 
1 (8.3%) 

 
11 (78.6%) 

1 (7.1%) 
0 (0.0%) 

2 (14.3%) 

 
36 (90.0%) 

3 (7.5%) 
0 (0.0%) 
1 (2.5%) 

Definition of PFT severity:  
FEV1% PRED and FVC% PRED: Mild (>70%), Moderate (60-69%), Moderately severe (50-59%), Severe (35-49%) and Very severe 
(<35%); 
DLCO% PRED: Mild (>60%), Moderate (40-60%), and Severe (<40%). 
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Figure S6. An overview of GRADS CT scoring forms 
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