

Long-term exposures to air pollutants affect F_{eNO} in children: a longitudinal study

Yue Zhang ^{1,2,3}, Sandrah P. Eckel⁴, Kiros Berhane⁵, Erika Garcia ⁴, Patrick Muchmore⁶, Noa Ben-Ari Molshatzki⁴, Edward B. Rappaport⁴, William S. Linn⁴, Rima Habre⁴ and Frank D. Gilliland⁴

¹Dept of Internal Medicine, University of Utah, Salt Lake City, UT, USA. ²Dept of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA. ³Veteran Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA. ⁴Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA. ⁵Dept of Biostatistics, Columbia University, New York, NY, USA. ⁶CodoniX, Inc., Potomac, MD, USA.

Corresponding author: Yue Zhang (zhang.yue@hsc.utah.edu)

Shareable abstract (@ERSpublications)

Annual average $PM_{2.5}$ and NO_2 were associated with airway inflammation as measured by F_{eNO} in schoolchildren, adding new evidence that long-term exposure affects F_{eNO} beyond the well-documented short-term effects https://bit.ly/3CGfYXN

Cite this article as: Zhang Y, Eckel SP, Berhane K, et al. Long-term exposures to air pollutants affect F_{eNO} in children: a longitudinal study. Eur Respir J 2021; 58: 2100705 [DOI: 10.1183/13993003.00705-2021].

This single-page version can be shared freely online.

Copyright ©The authors 2021. For reproduction rights and permissions contact permissions@ersnet.org

Received: 4 Jan 2021 Accepted: 5 Aug 2021

To the Editors:

Fractional exhaled nitric oxide ($F_{\rm eNO}$) is a marker of airway inflammation shown to be responsive to short-term air pollution exposures [1–4]. Although a number of cross-sectional studies have related $F_{\rm eNO}$ to either location-based proxies for long-term exposures to traffic/industrial activity or long-term (seasonal to annual average) ambient pollution [5–9], there is lack of longitudinal study and the effects of longer-term air pollution exposures on $F_{\rm eNO}$ are still not well studied, especially for school children. To fill the knowledge gap, we conducted a new study on longitudinal assessments of $F_{\rm eNO}$ to air pollutant exposures in the Southern California Children's Health Study (CHS) to determine whether $F_{\rm eNO}$ is a marker for chronic effects of air pollution exposures after accounting for short-term exposures.