Association between the renin–angiotensin system and chronic lung allograft dysfunction

Gregory Berra1,2,10, Sofia Farkona2,10, Zahraa Mohammed-Ali2, Max Kotlyar3, Liran Levy1,2, Sergi Clotet-Freixas2, Phillip Ly1,2, Benjamin Renaud-Picard1,2, Guan Zehong1,2, Tina Daigneault1,2, Allen Duong1,2, Ihor Batruch4, Igor Jurisica3,5, Ana Konvalinka2,6,7,8,9,11 and Tereza Martinu1,2,6,8,11

1Toronto Lung Transplant Program, University Health Network, Toronto, ON, Canada. 2Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada. 3Krembil Research Institute, University Health Network, Toronto, ON, Canada. 4Dept of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada. 5Depts of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada. 6Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada. 7Dept of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada. 8Institute of Medical Science, University of Toronto, Toronto, ON, Canada. 9Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. 10G. Berra and S. Farkona contributed equally as first authors. 11A. Konvalinka and T. Martinu contributed equally as lead authors and supervised the work.

Corresponding author: Ana Konvalinka (ana.konvalinka@uhn.ca)

Shareable abstract (@ERSpublications)


This single-page version can be shared freely online.

Abstract

Chronic lung allograft dysfunction (CLAD) is the major cause of death after lung transplantation. Angiotensin II (AngII), the main effector of the renin–angiotensin system, elicits fibrosis in both kidney and lung. We identified six AngII-regulated proteins (Ras homolog family member B (RHOB), bone marrow stromal cell antigen 1 (BST1), lysophospholipase 1 (LYPA1), glutamine synthetase (GLNA), thrombospondin 1 (TSP1) and laminin subunit β2 (LAMB2)) that were increased in urine of patients with kidney allograft fibrosis. We hypothesised that the renin–angiotensin system is active in CLAD and that AngII-regulated proteins are increased in bronchoalveolar lavage fluid (BAL) of CLAD patients.

We performed immunostaining of AngII receptors (AGTR1 and AGTR2), TSP1 and GLNA in 10 CLAD lungs and five controls. Using mass spectrometry, we quantified peptides corresponding to AngII-regulated proteins in BAL of 40 lung transplant recipients (stable, acute lung allograft dysfunction (ALAD) and CLAD). Machine learning algorithms were developed to predict CLAD based on BAL peptide concentrations.

Immunostaining demonstrated significantly more AGTR1+ cells in CLAD versus control lungs (p=0.02). TSP1 and GLNA immunostaining positively correlated with the degree of lung fibrosis (R²=0.42 and 0.57, respectively). In BAL, we noted a trend towards higher concentrations of AngII-regulated peptides in patients with CLAD at the time of bronchoscopy, and significantly higher concentrations of BST1, GLNA and RHOB peptides in patients that developed CLAD at follow-up (p<0.05). The support vector machine classifier discriminated CLAD from stable and ALAD patients at the time of bronchoscopy (area under the curve (AUC) 0.86) and accurately predicted subsequent CLAD development (AUC 0.97).

Proteins involved in the renin–angiotensin system are increased in CLAD lungs and BAL. AngII-regulated peptides measured in BAL may accurately identify patients with CLAD and predict subsequent CLAD development.