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Abstract
Chronic lung allograft dysfunction (CLAD) is the major cause of death after lung transplantation.
Angiotensin II (AngII), the main effector of the renin–angiotensin system, elicits fibrosis in both kidney
and lung. We identified six AngII-regulated proteins (Ras homolog family member B (RHOB), bone
marrow stromal cell antigen 1 (BST1), lysophospholipase 1 (LYPA1), glutamine synthetase (GLNA),
thrombospondin 1 (TSP1) and laminin subunit β2 (LAMB2)) that were increased in urine of patients with
kidney allograft fibrosis. We hypothesised that the renin–angiotensin system is active in CLAD and that
AngII-regulated proteins are increased in bronchoalveolar lavage fluid (BAL) of CLAD patients.
We performed immunostaining of AngII receptors (AGTR1 and AGTR2), TSP1 and GLNA in 10 CLAD
lungs and five controls. Using mass spectrometry, we quantified peptides corresponding to AngII-regulated
proteins in BAL of 40 lung transplant recipients (stable, acute lung allograft dysfunction (ALAD) and
CLAD). Machine learning algorithms were developed to predict CLAD based on BAL peptide
concentrations.
Immunostaining demonstrated significantly more AGTR1+ cells in CLAD versus control lungs (p=0.02).
TSP1 and GLNA immunostaining positively correlated with the degree of lung fibrosis (R2=0.42 and 0.57,
respectively). In BAL, we noted a trend towards higher concentrations of AngII-regulated peptides in
patients with CLAD at the time of bronchoscopy, and significantly higher concentrations of BST1, GLNA
and RHOB peptides in patients that developed CLAD at follow-up (p<0.05). The support vector machine
classifier discriminated CLAD from stable and ALAD patients at the time of bronchoscopy (area under the
curve (AUC) 0.86) and accurately predicted subsequent CLAD development (AUC 0.97).
Proteins involved in the renin–angiotensin system are increased in CLAD lungs and BAL. AngII-regulated
peptides measured in BAL may accurately identify patients with CLAD and predict subsequent CLAD
development.

Introduction
Lung transplantation is a life-saving therapy for patients with end-stage lung disease. Despite
improvements in early post-operative mortality and long-term outcomes, survival after lung transplant
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remains poor compared with other solid organ transplants [1]. Chronic lung allograft dysfunction (CLAD)
is the major long-term cause of death after lung transplant, affecting ∼50% of recipients at 5 years
post-transplant. Two main clinical CLAD phenotypes, both characterised by fibrosis in different
compartments of the lung, have been identified: bronchiolitis obliterans syndrome (BOS), marked by
fibrosis within small airways, leading to obstructive pulmonary physiology, and restrictive allograft
syndrome (RAS), a more aggressive disease seen in ∼20% of CLAD patients, characterised by diffuse
airway and also parenchymal lung fibrosis [2–8]. CLAD mechanisms remain poorly understood and there
are no effective treatments. Finding early markers of CLAD and identifying new therapeutic targets
represent key goals in lung transplantation.

Acute rejections, infections and environmental exposures drive chronic inflammation and lung allograft
injury. The chronic injury, in turn, leads to upregulation of pro-fibrotic mediators, which augment
fibroblast proliferation, migration and extracellular matrix (ECM) deposition [9–11]. Studies of tissue
fibrogenesis have shown that the “local” renin–angiotensin system mediates fibrosis in multiple organs,
including kidney and lung [12–16]. Angiotensin II (AngII), the main effector of the renin–angiotensin
system, promotes fibrosis in both kidney and lung [17]. Based on similarities between CLAD fibrosis and
kidney allograft interstitial fibrosis and tubular atrophy (IFTA), an important cause of kidney allograft
dysfunction and loss, we propose that mechanisms at play in IFTA may also be relevant in CLAD.

We recently identified six AngII-regulated proteins (Ras homolog family member B (RHOB), bone
marrow stromal cell antigen 1 (BST1), lysophospholipase 1 (LYPA1), glutamine synthetase (GLNA),
thrombospondin 1 (TSP1) and laminin subunit β2 (LAMB2)) in primary kidney cells, and demonstrated
that these proteins are dysregulated in kidney grafts with IFTA and increased in urine of IFTA patients
[18–20]. For the sake of simplicity, we will be using the protein name to refer to both the protein and
respective genes (RHOB, BST1, LYPLA1, GLUL, THBS1 and LAMB2) throughout this article. There is
evidence that these proteins are associated with, or implicated in, fibrosis in the lung. For instance, TSP1
and LAMB2 were significantly increased in lung tissue from patients with idiopathic pulmonary fibrosis
compared with controls [21]. TSP1 catalyses the activation of transforming growth factor (TGF)-β, and is
implicated in alveolar macrophage-dependent TGF-β activation in mouse and rat models of
bleomycin-induced pulmonary fibrosis [22, 23]. While it is unknown how LAMB2 contributes to
idiopathic pulmonary fibrosis pathobiology, it is associated with cell adhesion, differentiation and
migration [24], which have all been identified as important factors in fibrogenesis [25, 26]. miR-29, a
microRNA involved in LYPA1 regulation [27], is a central rheostat of fibrosis in different organs and
model systems [28–31]. More specifically, restoration or overexpression of miR-29 blocked the initiation
and progression of fibrosis in mouse lung, kidney and heart in vivo [31]. Lastly, BST1 was linked to lung
inflammation, radiation fibrosis of the lung [32] and bleomycin-induced fibrosis in mice [33]. To further
support our rationale, we built an interactome that shows that these six AngII-regulated proteins are
expressed both in kidney and lung, interact closely with the AngII receptors, and are functionally
associated with known pro-fibrotic proteins (supplementary material and supplementary figure S1).

Based on the aforementioned available data, we hypothesised that AngII is active in CLAD fibrosis and
that AngII-regulated proteins are measurable in bronchoalveolar lavage fluid (BAL) of lung transplant
patients as potential markers of CLAD. To test this hypothesis, we sought to determine the expression of
AngII receptors (AGTR1 and AGTR2) and AngII-regulated proteins in lung tissue and BAL from CLAD
and control patients. We also evaluated whether AngII-regulated proteins in BAL could predict subsequent
CLAD development in patients at risk of CLAD.

Patients, materials and methods
Patient selection and sample collection
This study was approved by the University Health Network (Toronto, ON, Canada) Research Ethics Board
(protocol 15-9531). Specimens were collected at Toronto General Hospital after written informed consent.
The experimental workflow is presented in figure 1. For details, see supplementary material.

Cohort for lung tissue reverse-transcriptase quantitative real-time PCR, immunostaining and Western
blotting
CLAD lung tissue was obtained from 33 patients undergoing retransplantation or autopsy between May
2015 and August 2019. CLAD diagnosis and phenotype were adjudicated according the 2019 International
Society for Heart and Lung Transplantation consensus [2] by at least two independent reviewers [34].
Control lung tissue was obtained from 10 donor lungs at the end of cold ischaemic time prior to
transplantation and from 10 patients undergoing lobar resection for suspected cancer. See figure 2a and
supplementary material.
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FIGURE 1 Illustration of the experimental workflow. CLAD: chronic lung allograft dysfunction; RT-qPCR: reverse-transcriptase quantitative real-time
PCR; AngII: angiotensin II; IF: immunofluorescence; IHC: immunohistochemistry; WB: Western blotting; BAL: bronchoalveolar lavage; BSA: bovine
serum albumin; ACN: acetonitrile; heavy labelled: heavy isotope-labelled peptides; LC: liquid chromatography; MS: mass spectrometry; PRM:
parallel reaction monitoring. a) mRNA and immunoreactivity of renin–angiotensin system components in CLAD tissue were assessed with RT-qPCR
and IF. Immunoreactivity of AngII-regulated proteins in CLAD tissue was evaluated with IHC and IF. AngII-regulated proteins were also assessed by
WB. b) Concentrations of AngII-regulated proteins in BAL samples were measured using MS-based targeted assays. Illustration of the steps for
quantification of AngII-regulated proteins in human BAL samples using PRM assays. c) Development of predictive models using artificial
intelligence.
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Cohort for BAL protein analysis
This cohort was selected from 224 consecutive lung transplantation patients who underwent a post-lung
transplantation surveillance or indication bronchoscopy at our centre between January and April 2019
(bronchoscopy and BAL protocol details are provided in the supplementary material). 20 mL samples of
BAL were sent for clinical assessment and any excess was processed for research. After BAL
centrifugation at 3220×g for 20 min, the supernatant was aliquoted and stored at −80°C. All patients were
prospectively screened for CLAD and acute lung allograft dysfunction (ALAD). ALAD was defined as an
acute drop in forced expiratory volume in 1 s (FEV1) ⩾10% compared with the highest FEV1 in the
previous 4 months or the immediately preceding FEV1 available, in the absence of extrapulmonary causes.
17 control patients with stable lung function were randomly selected from the 175 patients without FEV1

drop and with sufficient BAL. The concentrations of each peptide and combinations of these peptides were
compared between three final groups: 17 stable patients, 10 ALAD patients and 13 CLAD patients (n=40).
Of these 40 patients, 27 patients did not have CLAD at the time of bronchoscopy (17 stable patients and
10 ALAD patients). The CLAD status of these 27 patients was reassessed at follow-up, using the last
available FEV1 for each patient obtained 9–12 months after bronchoscopy. See figure 2b and
supplementary material.

Analyses of lung tissue and BAL
Paraffin-embedded lung tissue was assessed using haematoxylin/eosin, elastic trichrome and
immunostaining for AGTR1, AGTR2, TSP1, GLNA, PanCK, CD45 and α-smooth muscle actin (α-SMA).
AGTR1, AGTR2, TSP1, GLNA, LYPA1 and BST1 transcripts were measured using reverse-transcriptase
quantitative real-time PCR (RT-qPCR). TSP1 and GLNA protein expression levels were assessed by
Western blotting. Targeted mass spectrometry assays were developed to quantify AngII-regulated proteins
RHOB, BST1, LYPA1, GLNA, TSP1 and LAMB2 in BAL. Classifiers based on combined peptide
concentrations were built using machine learning algorithms, and their diagnostic accuracy and predictive
value were assessed in discriminating or predicting CLAD. See figure 1 and supplementary material.

Statistical analyses
Prism version 8.0 (GraphPad, San Diego, CA, USA) was used for the analysis of group characteristics: the
t-test or Wilcoxon–Mann–Whitney test was used for continuous variables; the Chi-squared test and
Fisher’s exact test were used for categorical variables. p<0.05 was considered significant.

All other statistical and machine learning analyses were conducted in R version 3.5.1 [35]. Associations
between peptide concentrations and patient clinical characteristics were tested: Spearman correlation for
continuous variables, Mann–Whitney U-tests for binary patient characteristics and Kruskal–Wallis tests for
ordinal patient characteristics. A heatmap of unadjusted p-values was plotted using the ggplot2 3.3.0
package [36]. Peptide concentrations were used to predict CLAD status, using four machine learning

FIGURE 2 Study flow diagrams of the different cohorts. CLAD: chronic lung allograft dysfunction; RT-qPCR:
reverse-transcriptase quantitative real-time PCR; RAS: restrictive allograft syndrome; BOS: bronchiolitis
obliterans syndrome; ALAD: acute lung allograft dysfunction; BAL: bronchoalveolar lavage; PFT: pulmonary
function test; FEV1: forced expiratory volume in 1 s. a) Study flow of the cohorts used for RT-qPCR and for
immunostaining. CLAD lung tissue was obtained from 33 patients between May 2015 and August 2019. The
control lungs came from two sources: donor lungs and lobectomy samples. For details, see supplementary
material. This cohort of samples was used in its entirety for the RT-qPCR experiments. Immunostaining
experiments were performed earlier and therefore included only samples collected up to March 2019. To
perform all staining concurrently, we a priori limited the number of samples to only those with the most
representative bronchiolitis obliterans and pleuroparenchymal fibroelastosis histology, characteristic of BOS
and RAS. Three donor lungs and two lung resection control specimens were included as controls for the
immunostaining experiments. b) Study flow of the BAL cohort, highlighting the two analyses at the time of
bronchoscopy and at follow-up. For this pilot project, we selected only patients who had BAL in excess of what
was needed for clinical and biobanking practices at our centre. Of 49 patients with CLAD and/or ALAD, six were
excluded because of an extrapulmonary reason for the FEV1 drop (heart failure, obesity) and 20 had
insufficient BAL samples. Of these 20 patients, 17 had insufficient BAL supernatant volumes and three had
insufficient protein quantity in the available BAL (<100 μg). #: CLAD is defined according the 2019 International
Society for Heart and Lung Transplantation guidelines; ¶: ALAD is defined as an acute drop of FEV1 ⩾10%
compared with the highest FEV1 in the previous 4 months or the last available FEV1 before bronchoscopy, if no
FEV1 was available in the preceding 4 months; +: at least 2 mL supernatant remaining after collection for
clinical and other competing studies, and at least 100 µg total protein in the sample.
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methods (mlr 2.15.0 package [37]): linear discriminant analysis, naïve Bayes, quadratic discriminant
analysis and support vector machine (SVM). Predictions were done using leave-one-out cross-validation.
Receiver operating characteristic (ROC) curves from predictions were plotted using the pROC 1.15.3
package [38]. p-values of predictions were calculated using the verification 1.42 package [39].

Results
AngII receptors and AngII-regulated proteins and transcripts in explanted CLAD lungs
We analysed AngII receptors (AGTR1 and AGTR2) and AngII-regulated proteins (TSP1 and GLNA) in
33 CLAD and 20 control lungs (figure 2a). CLAD patients had a significantly lower median (interquartile
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FIGURE 3 Immunofluorescence staining and quantification of renin–angiotensin system components. AGTR1: angiotensin II receptor type 1; AGTR2:
angiotensin II receptor type 2; DAPI: 4′,6-diamidino-2-phenylindole; α-SMA: α-smooth muscle actin; CLAD: chronic lung allograft dysfunction; BOS:
bronchiolitis obliterans syndrome; RAS: restrictive allograft syndrome. a) Elastic trichrome staining illustration of one airway (short arrow) and its
adjacent arteriole (long arrow) in one control and one CLAD sample. The airway in CLAD shows typical obliterative bronchiolitis with peri-airway
fibrosis. Immunofluorescence staining of the corresponding zone for AGTR1 and AGTR2. Scale bar: 300 μm. b) Dot plots of the automated
quantification by a cytonuclear colocalisation algorithm (supplementary material) of AGTR1+ and AGTR2+ cells in the different groups, with ratio of
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range (IQR)) age at sample collection (30 (24–48) years) compared with controls (62 (40–68) years), but
the lung allograft age was comparable to the age of the control lungs. There was no significant difference
in sex or smoking exposure history between CLAD and control patients. Of 33 CLAD specimens, 15
displayed a RAS or mixed phenotype and 18 had a BOS phenotype. Detailed patient characteristics are
provided in supplementary table S1. The cohort used for immunostaining is a subset of the RT-qPCR
cohort, with similar clinical characteristics as the larger RT-qPCR cohort (supplementary table S2).

As evident from trichrome staining, CLAD lungs had higher ECM deposition compared with controls
(figure 3a). Quantification of immunostaining demonstrates significantly higher numbers of AGTR1+ cells
in CLAD compared with controls (unpaired t-test, p=0.022). There was no difference in the mean number
of AGTR1+ cells in BOS versus RAS (figure 3b and supplementary figure S2). Moreover, the mean
number of AGTR2+ cells was not significantly different in CLAD versus controls or in BOS versus RAS
(figure 3b). Quantifying the staining as the percentage of the total number of cells did not affect the results
(supplementary figure S3). Finally, the AGTR1/AGTR2 ratio was significantly higher in CLAD versus

0 20 40 60 80 100
0

1

2

3

Parenchymal fibrosis %

T
S

P
1

 s
ta

in
in

g
 s

co
re R2=0.4181

p=0.0092

Control CLAD
0

1

2

3

T
S

P
1

 s
ta

in
in

g
 s

co
re

0.1795

BOS RAS
0

1

2

3

T
S

P
1

 s
ta

in
in

g
 s

co
re

0.2453

<30%  ≥30%
0

1

2

3

T
S

P
1

 s
ta

in
in

g
 s

co
re

Parenchymal fibrosis

0.0183
b)

c)

<30%   ≥30%
0

1

2

3

G
L

N
A

 s
ta

in
in

g
 s

co
re

Parenchymal fibrosis

0.0557

0 20 40 60 80 100
0

1

2

3

Parenchymal fibrosis %

G
L

N
A

 s
ta

in
in

g
 s

co
re R2=0.5771

p=0.0003

BOS RAS
0

1

2

3

G
L

N
A

 s
ta

in
in

g
 s

co
re

0.1508

Control CLAD
0

1

2

3

G
L

N
A

 s
ta

in
in

g
 s

co
re

0.0013

BOS RAS
0.001

0.01

0.1

1

10

G
L

N
A

/P
P

IA
 (

lo
g

1
0
)

0.3073

Control CLAD
0.001

0.01

0.1

1

10

100

G
L

N
A

/P
P

IA
 (

lo
g

1
0
)

0.9101

BOS RAS
0.1

1

10

100

T
S

P
1

/P
P

IA
 (

lo
g

1
0
)

0.0066

Control CLAD
0.01

0.1

1

10

100

T
S

P
1

/P
P

IA
 (

lo
g

1
0
)

0.0227
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TABLE 1 Baseline patient and bronchoscopy-based characteristics of patients according their clinical status at the time of bronchoscopy

Stable ALAD CLAD p-value

Patients 17 10 13
Patient characteristics
Recipient age at transplant years 65 (41.5–72) 65 (58–70.3) 62 (24.5–72) 0.77
Male 12 (70.6) 6 (60.0) 9 (69.2) 0.84
Native lung disease 0.15
Pulmonary fibrosis 7 (41.2) 4 (40.0) 6 (46.1)
COPD 5 (29.4) 3 (30.0) 4 (30.8)
Cystic fibrosis 4 (23.5) 0 (0) 3 (23.1)
Others# 1 (5.9) 3 (30.0) 0 (0)

Transplant type 0.91
Double lung¶ 13 (76.5) 7 (70.0) 10 (76.9)

Donor (D)/recipient (R) CMV mismatch status 0.59
D+/R− 4 (23.6) 1 (10.0) 1 (7.7)
D+/R+ and D−/R+ 10 (58.8) 8 (80.0) 8 (61.5)
D−/R− 3 (17.6) 1 (10.0) 4 (30.8)

Donor characteristics
Age of donor at transplant years 42.6±15.7 46±13.9 48.6±22 0.67
Ever-smoker 11 (64) 4 (40.0) 3 (23) 0.05
Pack-years 10 (4–20) 9 (2.8–13) 2 (one value) 0.67

Time from CLAD onset to bronchoscopy days 137 (82–371)
Bronchoscopy-based characteristics
Time from transplant to bronchoscopy days 270 (181–550) 202 (181–366) 571 (363–1407) 0.005*
Presence of respiratory symptoms 0.00002*
Acute symptoms (<1 month) 2 (11.8) 6 (60.0) 7 (54)
Chronic (>1 month) 0 (0) 2 (20.0) 4 (31)

Last available FEV1 before bronchoscopy
Mean±SD absolute FEV1 L 2.39±0.93 1.68±0.65 1.57±0.64 0.014*
Median drop from CLAD baseline % −5.4 −20.5 −29.7 <0.0001*
Median drop from ALAD baseline % 0 −19.7 −8.3 <0.0001*

CMV PCR 0.25
None measured 2 (11.8) 0 (0) 2 (15.4)
None detected or below quantification threshold 14 (88.2) 8 (80.0) 8 (61.6)
Positive 1 (5.9) 2 (20.0) 3 (23)

Immunosuppressive treatment
Cyclosporine/tacrolimus 13/4 8/2 6/7 0.13
Prednisone dose mg·day−1 12.5 (10–20) 15 (14.3–18.1) 10 (6.3–17.5) 0.19
Prior AR treatment within 3 months 3 0 2 0.38

Renin–angiotensin system blocking agents 0.4787
Patients on blocking agent+ 3 (17.6) 4 (40.0) 3 (23.1)
ACE inhibitor prescription 2/3 (66.7) 1/4 (25.0) 3/3 (100)
AngII receptor blocker prescription 1/3 (33.3) 3/4 (75.0) 0/3 (0)

Lung opacities on chest CT scan 0.27
No significant abnormalities 10 3 4
Acute abnormalities 5 4 5
Chronic abnormalities 2 5 3

A grade 0.45
A0 7 (41.2) 5 (50.0) 5 (38.5)
⩾A1 1 (5.9) 1 (10.0) 1 (7.7)
AX 7 (41.2) 2 (20.0) 2 (15.3)
Biopsy not performed 2 (11.7) 2 (20.0) 5 (38.5)

B grade 0.48
B0 2 (11.8) 1 (10.0) 2 (15.3)
BX 13 (76.4) 7 (70.0) 6 (46.2)
Biopsy not performed 2 (11.8) 2 (20.0) 5 (38.5)

AR treatment introduced after bronchoscopy 1§ (5.9) 1 (10.0) 4 (30.8) 0.20
BAL cytology analysis 0.83
Acute inflammation 2 (11.8) 4 (40.0) 3 (23.1)
Chronic inflammation 2 (11.8) 1 (10.0) 1 (7.7)
Eosinophilic inflammation 1 (5.9) 0 (0) 2 (15.3)

Continued
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controls but not in BOS versus RAS (figure 3b). Both AGTR1 and AGTR2 co-stained with CD45, but not
with α-SMA or PanCK (supplementary figure S4).

Surprisingly, AGTR1 gene expression was 4 times higher in controls compared with CLAD lungs (Mann–
Whitney test, p<0.05). In contrast, AGTR2 transcript levels tended to be higher in CLAD than in controls
(Mann–Whitney test, p=0.07). There were no statistically significant differences in AGTR1 or AGTR2
transcript levels between BOS and RAS (supplementary figures S5–S7).

TSP1 and GLNA staining was assessed in the same cohort of CLAD and control lungs (figure 4a, and
supplementary figures S8 and S9). Positive TSP1 staining was identified in areas of dense fibrosis. Cells in
the alveolar regions stained positively for both TSP1 and GLNA. We noted a statistically higher
immunoreactivity of GLNA in CLAD versus controls (Mann–Whitney test, p<0.0013), and consistent
trends towards higher staining of TSP1 in CLAD versus controls and of both GLNA and TSP1 in RAS
versus BOS lungs (figure 4b). TSP1 (p=0.03) and GLNA (p=0.20) protein expression levels
(supplementary material) were higher in the RAS cases compared with controls by Western blotting
(supplementary figure S10). Immunofluorescence for TSP1 and GLNA showed coexpression with CD68
(monocyte/macrophage marker) (supplementary figure S11).

We found a significant positive correlation between AngII-regulated proteins TSP1 and GLNA and the
extent of parenchymal fibrosis in each CLAD specimen, estimated by blinded histological scoring (figure
4b, supplementary material and supplementary figure S12). When dividing the patients into two groups
based on fibrosis extent, higher TSP1 and GLNA immunoreactivity was identified in patients with ⩾30%
parenchymal fibrosis (figure 4b).

TSP1 gene expression was significantly higher in CLAD compared with control lungs (Mann–Whitney
test, p=0.02) and in RAS compared with BOS (Mann–Whitney test, p=0.006) (figure 4c). GLNA, LYPA1
and BST1 transcripts were similar in CLAD versus controls and in BOS versus RAS lungs (figure 4c, and
supplementary figures S6, S7 and S13).

Quantification of AngII-regulated proteins in BAL of lung transplant recipients
Baseline patient characteristics at the time of bronchoscopy were comparable between stable, ALAD and
CLAD patients (table 1).

Using optimised parallel reaction monitoring (PRM) assays (supplementary figures S14 and S15), we
detected two native peptides of TSP1, BST1, GLNA and LYPA1 protein and one RHOB peptide in a pool
of BAL from controls and CLAD patients. We constructed linearity curves (supplementary figure S16) for
BST1, GLNA, LYPA1 and RHOB. LAMB2 protein was not detected in BAL. TSP1 was detected in the
pooled BAL, but at levels which would not make the quantification confident.

We then quantified AngII-regulated peptides in individual BAL samples. First, we examined whether
AngII-regulated peptide concentrations correlated with clinical characteristics at the time of bronchoscopy

TABLE 1 Continued

Stable ALAD CLAD p-value

Significant bacterial pathogens in BAL 2ƒ (11.8) 0 (0) 2## (15.3) 0.45
Initiation of antimicrobial treatment post-bronchoscopy 4 (23.6) 4 (40.0) 4 (30.8) 0.66
With microbiological documentation of a significant pathogen in BAL 2 (11.8) 0 (0) 1 (7.7)
Without microbiological documentation of a significant pathogen 2 (11.8) 4 (40.0) 3 (23.1)

Data are presented as n, median (interquartile range) for non-normally distributed variables, n (%) or mean±SD for normally distributed variables,
unless otherwise stated. Distribution of demographic characteristics was tested by the Kolmogorov–Smirnov test. ALAD: acute lung allograft
dysfunction; CLAD: chronic lung allograft dysfunction; COPD: chronic obstructive pulmonary disease; CMV: cytomegalovirus; FEV1: forced expiratory
volume in 1 s; AR: acute rejection; ACE: angiotensin converting enzyme; AngII: angiotensin II; CT: computed tomography; BAL: bronchoalveolar
lavage. #: one patient had pulmonary arterial hypertension in the stable group, and one patient had lymphangioleiomyomatosis and two patients
had bronchiectasis in the ALAD group; ¶: all the other patients were single lung transplant (no patient with heart and lung transplant was included);
+: significant prescription was defined as a continuous prescription for at least 4 weeks; §: patient already treated for persistent A2 rejection at time
of bronchoscopy (introduction of intravenous immunoglobulin for antibody-mediated rejection component after bronchoscopy); ƒ: Pseudomonas
aeruginosa and Haemophilus influenzae; ##: P. aeruginosa and Mycobacterium avium (first isolation without any corresponding clinical and
radiological context: no treatment introduced). For comparison between the three groups, we used one-way ANOVA or nonparametric equivalent.
Proportions of discrete variables were assessed by the Chi-squared test and Fischer’s exact test. *: p<0.05.
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FIGURE 5 Concentration of angiotensin II (AngII)-regulated peptides in bronchoalveolar lavage (BAL) and clinical status at the time of
bronchoscopy. BST1: bone marrow stromal cell antigen 1; GLNA: glutamine synthetase; LYPA1: lysophospholipase 1; RHOB: Ras homolog family
member B; CMV: cytomegalovirus; DSA: donor-specific antibody; ACR: acute cellular rejection; ALAD: acute allograft dysfunction; CLAD: chronic lung
allograft dysfunction; AUC: area under the curve; LDA: linear discriminant analysis; NB: naïve Bayes; QDA: quadratic discriminant analysis;
SVM: support vector machine. a) Heatmap showing the association between patient clinical characteristics at the time of bronchoscopy and the
concentration of AngII-regulated peptides. Blue indicates significant p-values (Spearman correlation for continuous variables, Mann–Whitney
U-tests for binary patient characteristics and Kruskal–Wallis tests for ordinal patient characteristics, p<0.05), with darker colour indicating lower
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(figure 5a). AngII-regulated peptide concentrations correlated significantly and directly with the degree of
neutrophilic inflammation and cytomegalovirus (CMV) viraemia. GLNA, RHOB and LYPA1 peptides also
correlated with the recipient’s sex. Importantly, there was no correlation between the peptide concentrations
and the time elapsed between transplantation and BAL collection.

Second, we compared AngII-regulated peptides between patient groups, based on the presence of CLAD or
ALAD at the time of bronchoscopy. Although a trend was observed for higher concentrations of RHOB,
BST1 and GLNA peptides in BAL from CLAD patients compared with the other two groups, this
difference was not statistically significant (figure 5b). We then examined whether the concentrations of
individual peptides and combinations of the seven peptides using machine learning approaches could
segregate patient groups. Individual peptide concentrations were marginally better compared with chance
alone (figure 5c). However, the SVM classifier accurately discriminated CLAD from stable patients with
area under the curve (AUC) 0.92 (figure 5c). The SVM classifier also discriminated between CLAD and
no CLAD (stable+ALAD) with AUC 0.86 (figure 5d).

We wondered whether AngII-regulated protein concentrations in BAL could predict development of CLAD
in the subsequent 12 months. We thus focused on the 27 patients in the BAL cohort who did not have a
diagnosis of CLAD at the time of bronchoscopy, but who had a subsequent 9–12-month follow-up FEV1

(figure 2b). The baseline clinical and bronchoscopy-based characteristics were largely comparable between
patients who developed CLAD at follow-up (n=6) and patients who did not (n=21) (table 2).

Concentrations of RHOB, BST1 and GLNA peptides (IQAYDYLECSAK, GFFADYEIPNLQK,
ALLSPEQR and LVLCEVFK) at the time of bronchoscopy were significantly higher in patients who
developed CLAD at follow-up compared with those who did not (figure 6a). We noted a consistent trend
in the same direction for the remaining peptides. We then examined the ability of individual or combined
peptide concentrations to predict CLAD development using machine learning. Individual peptide
concentrations had a modest-to-good accuracy with AUC 0.58–0.80 (figure 6b). The SVM classifier that
included combined peptide concentration had excellent accuracy with AUC 0.97 in predicting subsequent
CLAD development (figure 6b).

Discussion
We examined the presence of AngII receptors and our previously reported AngII-regulated proteins in
CLAD lungs, and measured the concentration of AngII-regulated proteins in BAL from lung
transplantation recipients. We made three major observations: 1) AngII receptor AGTR1 is increased in
CLAD versus control lungs and AngII-regulated proteins TSP1 and GLNA correlate with the degree of
lung fibrosis; 2) classifiers based on combined AngII-regulated peptides measured in BAL accurately
distinguish CLAD from stable and ALAD patients; and 3) AngII-regulated peptides in BAL predict CLAD
development.

Applying immunofluorescence, we found significantly higher numbers of AGTR1+ cells, with a higher
ratio of AGTR1+/AGTR2+ cells in CLAD. The renin–angiotensin system plays an important role in
fibrosis of the lung and other organs, and this system may have an instrumental role in CLAD. Pre-clinical
and clinical studies showed that the renin–angiotensin system and its main effector AngII are active in lung
fibrosis [40–45]. These deleterious effects can be reversed by renin–angiotensin system inhibitors in mice
[40]. AGTR1 is the mediator of pro-fibrotic and pro-inflammatory effects of AngII [44]. A consistently
higher expression of AGTR1 has been shown in fibrotic lung conditions [15, 16, 41, 42]. In contrast,
AGTR2 is thought to have more modulatory effects [15, 44]. While both AGTR1 and AGTR2 increase
during wound healing [46], existing data on AGTR2 expression in different fibrotic conditions are
conflicting [47]. Surprisingly and contrary to the protein levels, transcript levels of AGTR1 were lower and
transcript levels of AGTR2 were higher in CLAD. While we have no definitive explanation for this
observation, we formulate several hypotheses. First, CLAD samples displayed advanced fibrosis, where
active transcription may have been reduced. Downregulation of AngII receptor transcripts in advanced

p-value. “+” indicates that the presence of the clinical characteristic is associated with higher peptide concentrations; “–” indicates that the
presence of the clinical characteristic is associated with lower peptide concentrations. b) Plots of the concentration of seven AngII-regulated
peptides from RHOB, BST1, GLNA and LYPA1 proteins, according to patient clinical status at the time of bronchoscopy: stable, ALAD and CLAD.
c, d) Receiver operating characteristic curves showing the performance of each individual peptide (on the left) or different machine learning
algorithms combining the seven peptides (on the right) for c) detection of CLAD versus stable patients at the time of bronchoscopy and
d) prediction of CLAD versus no CLAD at the time of bronchoscopy.
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TABLE 2 Characteristics of patients at risk of chronic lung allograft dysfunction (CLAD) at the time of bronchoscopy according to their status at
follow-up

Clinical status at follow-up p-value

Remaining stable Developing CLAD

Patients 21 6
Patient characteristics
Recipient age at transplant years 65 (41.5–72) 63.5 (58–68) 0.89
Male 13 (61.9) 5 (83.3) 0.63
Native lung disease 0.69
Pulmonary fibrosis 9 (42.9) 2 (33.3)
COPD 5 (23.8) 3 (50.0)
Cystic fibrosis 4 (19.0) 0 (0)
Others 3 (14.3) 1 (16.7)

Transplant type >0.99
Single lung 6 (28.6) 1 (16.7)
Double lung 15 (71.4) 5 (83.3)

Donor (D)/recipient (R) CMV mismatch status 0.08
D+/R− 13 (61.9) 1 (16.7)
D+/R+ and D−/R+ 4 (19.0) 5 (83.3)
D−/R− 4 (19.0) 0 (0)

Donor characteristics
Age of donor at transplant years 45.2±14.3 39.3±17.4 0.41
Ever-smoker 11 (52.4) 4 (66.7) 0.66
Pack-years 10 (6.5–16.5) 7.5 (1–18.5) 0.77
EVLP before implantation of organ 11 (52.4) 3 (50.0) >0.99

Time from bronchoscopy to CLAD onset days 119.8±135.6
Bronchoscopy-based characteristics
Time post-transplant days 268 (180–369) 287.5 (213–750) 0.23
Presence of respiratory symptoms
Acute symptoms (<1 month) 5 (23.8) 3 (50.0) 0.32
Chronic (>1 month) 1 (4.8) 1 (16.7) 0.40

Last available FEV1 before bronchoscopy
Mean±SD absolute FEV1 L 2.2 (0.95) 1.9 (0.67) 0.46
Mean±SD drop from CLAD baseline % −9.57±9.46 −14.6±10.98 0.27
Mean±SD drop from ALAD baseline % −7.58±10.29 −9.02±12.65 0.77

CMV PCR 0.12
None measured 2 (9.5) 0 (0)
None detected 18 (85.7) 4 (66.7)
Positive 1 (4.8) 2 (33.3)

Immunosuppressive regimen
Cyclosporine/tacrolimus 16/5 5/1 0.71
Prednisone dose mg·day−1 15 (10–20) 13.75 (11.25–16.25) 0.86
Prior AR treatment within 1 month 1 0 0.59
Prior AR treatment within 3 months 2 0 0.43

Renin–angiotensin system blocking agent 0.28
Patients on blocking agent 4 (19.0) 3 (50.0)
ACE inhibitor prescription 1 (4.8) 2 (33.3)
AngII receptor blocker prescription 3 (14.2) 1 (16.7)

Lung opacities on chest CT scan
No significant abnormalities 12 (57.1) 1 (16.7) 0.17
Acute abnormalities 6 (28.6) 3 (50.0) 0.37
Chronic abnormalities 4 (19.0) 3 (50.0) 0.29

Current DSAs 6 (28.6) 1 (16.7) >0.99
A grade 0.22
A0 8 (38.1) 4 (66.7)
A1 1 (4.8) 0 (0)
A2 1 (4.8) 0 (0)
AX 9 (42.9) 0 (0)
Biopsy not performed 2 (9.5) 2 (33.3)

B grade 0.96
B0 2 (9.5) 1 (16.7)

Continued
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fibrosis was shown previously [48]. Second, AngII receptor activation, via a negative feedback loop, may
induce transcriptional downregulation, perhaps through the β-arrestin pathway [49]. Treatment of mesangial
cells with AngII markedly suppressed AGTR1 mRNA expression [50]. Third, NF-κB inhibition by
calcineurin inhibitors in lung transplant recipients downregulates AGTR1 transcription [51]. We next
examined the cell types expressing AngII receptors and found positive co-staining for both AGTR1 and
AGTR2 with CD45+ cells, suggesting the expression of AngII receptors by immune cells, as previously
reported [52–54].

Among AngII-regulated proteins, GLNA displayed higher immunostaining, while TSP1 displayed a trend
towards an increase in CLAD. Their immunostaining correlated with the extent of parenchymal fibrosis
within CLAD lungs. Furthermore, RT-qPCR analysis showed significantly higher TSP1 expression in
CLAD. TSP1 is a structural and regulatory ECM glycoprotein [55]. TSP1 mediates kidney fibrosis in vitro
[56] and in vivo [57, 58], and has been linked to ischaemia reperfusion injury and fibrosis in kidney
allografts in both animal models and patients [59–61]. Finally, TSP1 mRNA levels were significantly
increased in urine cell pellets from kidney transplant patients with fibrosis (IFTA) compared with controls
[62], while TSP1 urine protein excretion was significantly increased in IFTA [20]. GLNA is the
ATP-dependent enzyme that catalyses the synthesis of glutamine from glutamate and ammonia. GLNA is
required for proliferation of fetal skin fibroblasts, and is expressed in fibroblasts and immune cells of the
tumour micro-environment. GLNA differential expression had been used to monitor regression of fibrosis
in hepatic injury [63]. The other AngII-regulated proteins that we examined in lung tissue and monitored
in BAL have also been involved in fibrosis. BST1 gene knockout protects against fibrosis in a mouse
model of renal ischaemia reperfusion injury [64]. RHOB belongs to a family of GTPases upregulated by
TGF-β and is involved in actin cytoskeleton remodelling in fibroblasts [65, 66]. LYPA1 protein is involved
in nitric oxide metabolism. MIR29B1 gene mutation resulted in significantly increased fibrosis and LYPA1
protein expression and lower nitric oxide in the renal outer medulla in rats [27]. These AngII-regulated
proteins thus participate in fibrosis, although it remains unclear if they are controlled by a common
regulator, downstream of AGTR1.

TABLE 2 Continued

Clinical status at follow-up p-value

Remaining stable Developing CLAD

B1R 0 (0) 0 (0)
B2R 0 (0) 0 (0)
BX 17 (80.1) 3 (50.0)
Biopsy not performed 2 (9.5) 2 (33.3)

AR treatment introduced after bronchoscopy 2 (9.5) 0 (0) >0.99
BAL cytology analysis
Acute inflammation 3 (14.3) 2 (33.3) 0.30
Chronic inflammation 0 (0) 2 (33.3) 0.04*
Eosinophilic inflammation 1 (4.8) 0 (0) >0.99

Other pathological abnormalities on transbronchial biopsies
Haemosiderosis 2 (9.5) 0 (0) >0.99
Organising pneumonia 0 (0) 1 (16.7) 0.22
Interstitial chronic inflammation 9 (42.9) 3 (50.0) >0.99

Antimicrobial treatment at time of bronchoscopy
New antimicrobial treatment initiated post-bronchoscopy 6 (28.6) 1 (16.7) >0.99
With microbiological documentation 2 (9.5) 1 (16.7) 0.55

Pre-existent treatment 3 (14.3) 1 (16.7) >0.99
BAL microbiology result
Significant bacterial pathogens 1 (4.8) 1 (16.7) 0.40
Significant viral pathogens 0 (0) 0 (0) >0.99
Significant fungal pathogens 3 (14.3) 0 (0) >0.99
Galactomannan positive 0 (0) 0 (0) >0.99

Data are presented as n, median (interquartile range) for non-normally distributed variables, n (%) or mean±SD for normally distributed variables,
unless otherwise stated. Distribution of demographic characteristics was tested by the Kolmogorov–Smirnov test. COPD: chronic obstructive
pulmonary disease; CMV: cytomegalovirus; EVLP: ex vivo lung perfusion; FEV1: forced expiratory volume in 1 s; AR: acute rejection; ACE: angiotensin
converting enzyme; AngII: angiotensin II; CT: computed tomography; DSA: donor-specific antibody; BAL: bronchoalveolar lavage. Comparison of
mean or median of continuous variables in two groups was assessed by the t-test or Mann–Whitney test, respectively. Proportions of discrete
variables were assessed by the Chi-squared test and Fischer’s exact test. *: p<0.05.

https://doi.org/10.1183/13993003.02975-2020 14

EUROPEAN RESPIRATORY JOURNAL ORIGINAL RESEARCH ARTICLE | G. BERRA ET AL.



a)

No CLAD CLAD
0.000

0.005

0.010

0.015

0.0305

No CLAD CLAD
0.0

0.1

0.2

0.3

0.4

fm
o

l·
μ

L
–

1

fm
o

l·
μ

L
–

1

fm
o

l·
μ

L
–

1

fm
o

l·
μ

L
–

1

fm
o

l·
μ

L
–

1

fm
o

l·
μ

L
–

1

fm
o

l·
μ

L
–

1

0.0359

No CLAD CLAD
0.0

0.2

0.4

0.6

0.8
0.0420

BST1 protein

GLNA protein LYPA1 protein

RHOB protein

IQAYDYLECSAK

No CLAD CLAD
0.0

0.1

0.2

0.3

0.0359

No CLAD CLAD
0.00

0.05

0.10

0.15

0.20
0.0748

No CLAD CLAD
0.0

0.2

0.4

0.6

0.8 0.0614

No CLAD CLAD
0.00

0.02

0.04

0.06

0.08

0.10 0.0566

ALLSPEQRGFFADYEIPNLQK

LVLCEVFK DIVEAHYR ASFPQGPIGGANRLAGVTALSCWLPLR

b)

T
ru

e
-p

o
si

ti
ve

 r
a

te

False-positive rate

1.00

0.75

0.50

0.25

0.00
0.00 0.25 0.50 0.75 1.00

T
ru

e
-p

o
si

ti
ve

 r
a

te

False-positive rate

1.00

0.75

0.50

0.25

0.00
0.00 0.25 0.50 0.75 1.00

Peptide                                      AUC
RHOB: IQAYDYLECSAK         0.80
BST1: GFFADYEIPNLQK          0.79
BST1: ALLSPEQR                    0.78
GLNA: LVLCEVFK                        0.79
GLNA: DIVEAHYR                       0.75
LYPA1: LAGVTALSCWLPLR       0.71
LYPA1: ASFPQGPIGGANR        0.58

Classifier     AUC
LDA               0.72
NB                 0.72
SVM              0.97

FIGURE 6 Concentration of angiotensin II (AngII)-regulated proteins in bronchoalveolar lavage (BAL) and subsequent development of chronic lung
allograft dysfunction (CLAD). RHOB: Ras homolog family member B; BST1: bone marrow stromal cell antigen 1; GLNA: glutamine synthetase; LYPA1:
lysophospholipase 1; AUC: area under the curve; LDA: linear discriminant analysis; NB: naïve Bayes; SVM: support vector machine. a) Plots of the
concentration of two peptides for each AngII-regulated protein (BST1, GLNA and LYPA1) and one peptide for RHOB. The normality of the
distribution of the peptide concentrations at follow-up was assessed with the Kolmogorov–Smirnov test. The comparison of the concentration of
each peptide according to the follow-up clinical status (CLAD development and no CLAD development) was performed with the t-test or Mann–
Whitney test according to the distribution. b) Performance of each peptide individually (left) and performance of different machine learning
algorithms (right) combining seven peptides for prediction of CLAD status (CLAD versus no CLAD) at follow-up.
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For the measurement of the AngII-regulated proteins in BAL samples, we developed PRM assays that
selectively monitor peptides unique to our proteins. PRM assays are highly selective, are cost-effective due
to their multiplexing capabilities [67, 68] and are suggested for proteins for which no high-quality
antibodies have been generated [69]. The limitation of PRM is poor sensitivity for very low abundance
proteins in a complex matrix. Our PRM assays showed good performance for quantification of four out of
six AngII-regulated proteins, i.e. BST1, GLNA, LYPA1 and RHOB, but we could not quantify TSP1 or
LAMB2. This could be explained by the restricted sensitivity of PRM assays for peptide detection in BAL
(e.g. TSP1) or peptide absence in BAL (e.g. LAMB2). Given the usual infrastructure and expertise in
clinical laboratories, our targeted proteomics assays could be implemented for clinical monitoring. In fact,
similar targeted mass spectrometry-based methodology is routinely used to quantify proteins, metabolites
and drug levels in the clinic [70].

We quantified the respective AngII-regulated peptides in BAL of patients with stable lung function, ALAD
and CLAD. Interestingly, all AngII-regulated peptides correlated strongly with the presence of neutrophils
in the BAL fluid and the majority of them correlated with CMV viraemia. Our proteins thus hold promise
for identification of patients with lung allograft inflammation. Individual AngII-regulated peptide
concentrations could not discriminate between CLAD and non-CLAD patients, at the time of
bronchoscopy. In contrast, a classifier based on the combined peptide concentrations exhibited significantly
improved diagnostic accuracy. This is interesting and potentially biologically important, as it suggests
coordinated secretion of these peptides is relevant and supports the value of combining markers.

Even more interestingly, patients who developed CLAD within 1-year follow-up demonstrated higher
concentrations of BST1, GLNA and RHOB proteins compared with patients who remained stable. LYPA1
protein also showed a trend towards higher concentration in the CLAD group. While individual peptide
concentrations predicted development of CLAD with relatively good accuracy, a classifier based on
combined peptide concentrations enabled prediction of CLAD status with an almost perfect accuracy of
97%. Our data clearly show that the classifiers based on combined peptide concentrations yielded
improved diagnostic accuracy and predictive value compared with individual proteins. Numerous studies
have harnessed artificial intelligence and machine learning algorithms for improvement of diagnosis,
proactive disease monitoring and personalised medicine [71–73]. Nevertheless, reassessment of these
classifiers in an independent validation cohort is needed and is under way.

Our study has several strengths. This highly translational approach furthered insights into the expression of
the renin–angiotensin system in CLAD and enabled quantification of AngII-regulated proteins in BAL,
which may represent promising biomarkers. We took advantage of a unique patient cohort of lung transplant
recipients with archived tissue and BAL samples. We used a multimodal approach as we tested our
hypothesis in tissue and in BAL, and employed different (including cutting-edge) techniques to confirm our
observations (immunostaining, RT-qPCR, Western blotting and mass spectrometry). As the direct activity of
the renin–angiotensin system is difficult to assess due to the short half-lives of angiotensin peptides, we
combined the measurement of AngII receptors with AngII-regulated proteins to gain insight into renin–
angiotensin system activity. Finally, using machine learning algorithms, we demonstrate that the combination
of AngII-regulated peptides can diagnose CLAD and predict later development of CLAD with high accuracy.

Notwithstanding its strengths, our study has some limitations. In this cross-sectional study, causality cannot
be determined. Future analyses of longitudinal BAL samples will determine the stability and reproducibility
of AngII-regulated peptides. The selection of the control group is challenging in studies involving lung
tissue. For instance, we cannot formally exclude the influence of smoking, neoplasia (donor lungs) or
ischaemia (lobectomy samples) on the expression of renin–angiotensin system proteins and AngII-regulated
peptides. Finally, in the future, we will validate these observations in a larger cohort of lung transplant
recipients and study mechanisms via in vitro and mouse orthotopic lung transplantation models.
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