Pulmonary vascular resistance predicts mortality in patients with pulmonary hypertension associated with interstitial lung disease: results from the COMPERA registry

Karen M. Olsson1,2, Marius M. Hoeper1,2, Christine Pausch3, Ekkehard Grünig4, Doerte Huscher5, David Pittrow3,6, Stephan Rosenkranz7 and Henning Gall2,8

1Dept of Respiratory Medicine, Hannover Medical School, Hannover, Germany. 2German Centre of Lung Research (DZL), Germany. 3GWT-TUD GmbH, Epidemiological Centre, Dresden, Germany. 4Centre for Pulmonary Hypertension, Thoraxclinic Heidelberg GmbH at Heidelberg University Hospital, Heidelberg, Germany. 5Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin, Berlin, Germany. 6Institute for Clinical Pharmacology, Medical Faculty, Technical University, Dresden, Germany. 7Clinic III for Internal Medicine (Cardiology) and Center for Molecular Medicine (CMMC), and the Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany. 8Dept of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.

Shareable abstract (@ERSpublications)
In patients with pulmonary hypertension associated with interstitial lung disease, pulmonary vascular resistance provides stronger prognostic information than mean pulmonary arterial pressure https://bit.ly/3w1QctS


To the Editor:

Pulmonary hypertension (PH) is a common complication of many chronic lung diseases, especially COPD and interstitial lung disease (ILD) [1]. In these conditions, the development of PH is associated with an aggravation of symptoms and an increase in mortality risk. In most patients with chronic lung disease, the haemodynamic severity of PH is mild to moderate, while some patients develop severe PH, which is presently defined by a mean pulmonary arterial pressure (mPAP) ≥35 mmHg or mPAP ≥25 mmHg in the presence of a cardiac index <2.0 L·min⁻¹·m⁻² [2]. These haemodynamic criteria were introduced per expert consensus but were not based on solid data.