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Introduction
Advances in platform technologies facilitate the design of large-scale “multi-omic” studies that encompass
genomic, transcriptomic, proteomic, epigenomic, metabolomic and microbiomic components, each
representing different views of a single biological specimen [1]. While useful, this is analogous to the
“Flatland” jeu d’esprit, where the same reality (i.e. a sphere of constant diameter) is subject to different
interpretations (i.e. circles of varying diameter) depending on one’s point of view (from various
two-dimensional cross sections). Although each -omics approach has value, they can be even more useful
if holistically modelled through appropriate integration. While “mono-omic” analysis has been extremely
beneficial, from a systems medicine perspective, this may fail to capture the emergent properties of an
individual system and hence may yield limited understanding of non-linear and dynamic features, all of
which are increasingly evident in the pathogenesis of respiratory disease [1]. There is clearly a growing
need for a more holistic “all in” integration methodology that leverages each distinct -omic dataset derived
from multi-omic studies (figure 1). Although several integrative methodologies are available (e.g.
mixOmics, Anvi’o and integrOmics), similarity network fusion (SNF) has emerged as an appropriate,
applicable and robust method in respiratory disease [2–4].

How does similarity network fusion work?
SNF requires three steps for implementation: creation of a similarity network based on individual -omic
datasets; fusion of multiple similarity networks; followed by analysis of the integrated networks (figure 1).

Similarity network creation
In any data integration methodology, data standardisation is of paramount importance. This crucial step
allows meaningful comparison between the different -omic datasets. In SNF, creation of a similarity
network is used as a method for standardisation between different -omic datasets, for instance, for each
mono-omic dataset, a network is created with individual patients as nodes and edges representing the value
or magnitude of the similarity (measure) between patients (nodes), given that particular dataset (figure 1).
Measures that are used to quantify similarity between patients largely depend upon the inherent properties
of the data type. Therefore, theoretically appropriate and biologically meaningful similarity measures
should be selected for each respective dataset [4–6]. For example, in work from our group, Bray–Curtis
similarity, a metric reflecting taxonomic diversity, is applied to microbiome data [4]. In some cases,
appropriate measures may not exist, in which case the similarity measure can be generated from distance
measures (e.g. Euclidean distance) using a similarity kernel function, such as an exponential similarity
kernel, which uses an exponential rule to assign exponentially decreasing values to distant patients and
vice versa [2]. In specific cases where differing similarity measures are needed for different -omic datasets,
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i.e. for integrating microbiomes using Bray–Curtis similarity (range: 0 to 1) with transcriptomes using
Spearman correlation (range: −1 to 1), a potential false weighting of networks can be overcome by key
normalisation steps, such as quantile normalisation, which makes the distributions from different similarity
measures identical in statistical properties and hence rigorously comparable [7]. As such, the SNF approach
is durable and can be adapted to suit a wide range of experimental datasets of diverse origin with the
potential for inclusion of host -omic profiles (e.g. human transcriptomics, proteomics and/or
metabolomics). This has particular relevance in the setting of chronic respiratory disease, where persistent
bacterial infection may be accompanied by allergic manifestations of fungal origin in concert with a
dysregulated host immune response [8], or, where microbiome profiles at disparate anatomical sites may
functionally converge, contributing to pathology via the lung–gut axis [9, 10]. In such cases, an integrated
analytical approach, encompassing multiple -omic datasets, is more likely to capture the ensuing complex
and dynamic host–microbe interactions.

Similarity network fusion
SNF is used to combine multiple patient similarity networks (based on different -omics platforms) into a
holistic network of patient relationships. It achieves this by decomposing the similarity network of a
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FIGURE 1 The concept of “integrated” multi-omics analysis: mono-omics-based profiling offers distinct views
of a single clinical specimen and/or disease that, following integration, may improve patient endotyping.
Similarity network fusion (SNF) can achieve this integration by creating similarity networks for each respective
-omic dataset using an appropriate similarity measure. This is followed by quantile normalisation to normalise
similarity values between datasets (if -omic specific similarity measures are used) followed by SNF to merge
similarity networks that result in an integrated patient network. Further downstream analysis of the integrated
patient network can then be performed to identify clinically relevant subgroups or clusters.
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particular -omic dataset into two networks, one capturing the overall network structure i.e. similarity of a
patient to all other patients, and the other capturing local network structure i.e. similarity of a patient to its
“K”-most similar patients, where “K” may be tuned to an optimal value given the dataset [4]. WANG et al. [2]
suggest setting “K” to the number of expected clusters or, if this is unknown, to N/10, where N represents
the total patient number. Such an approach, capturing local structure from different -omic datasets, allows
SNF to eliminate “noise”. The decomposed networks (derived from different datasets) are then iteratively
fused, a process best conceptualised as the diffusion of similarity information through common edges
between the different patient similarity networks. In the resulting “final” network, an edge is said to
have increased similarity if it is supported by the majority of -omic datasets and a decreased similarity if
it is not.

Analysis of the integrated network
Typically, two forms of secondary analytical approach may be pursued given the multidimensional clinical
data structure: supervised or unsupervised. Supervised analysis uses prior knowledge or “domain
expertise” to model relationships between data “features”, for example microbiome profiles, and “labels”,
the clinical patient phenotype. Conversely, unsupervised analysis attempts to elucidate “patterns”, drawing
inference from data “features”. Importantly, since integrated SNF networks retain only similarity
information between patients in the input space, implementation of supervised analysis is not
straightforward and needs modification. Examples of this include integrative network fusion, which
implements feature-ranked SNF within a machine learning framework, or SNF-NN, which implements
deep learning alongside SNF [11, 12]. Alternatively, semi-supervised or unsupervised analysis can be
pursued. Semi-supervised analysis employs combinations of labelled and unlabelled data in unsupervised
fashion to predict unlabelled data in a supervised manner. One important semi-supervised algorithm is
label propagation, a method leveraging on nodes connected by heavy edges, i.e. similar patients tend to
have comparable labels. This graph algorithm assigns labels to previously unlabelled nodes by
“propagating labels” of previously labelled nodes through associated edges. This is used to predict patient
labels from the integrated network, given the known labels [13]. When practically applied, an integrated
patient network derived from multi-omic endophenotypic profiles may be used to identify and risk stratify
patients at higher risk of clinical deterioration.

Integrated patient networks may also be interrogated by similarity graph clustering algorithms, of which
spectral clustering is most widely used [14]. This unsupervised clustering algorithm embeds the nodes, i.e.
patients of a network, into a lower-dimensional space, preserving patient similarities essential for clustering
but losing the original feature space (defining patient characteristics) for direct interpretation, and then
“clusters” patients in this space with a preferred clustering method (e.g. k-means). By this approach,
multi-omic integration by SNF, followed by spectral clustering, can demonstrably identify biologically
meaningful subgroups, such as rhinovirus bronchiolitis endotypes [15].

Survival models, including Cox regression, which are used to predict survival time based on multiple risk
factors, may also be used with SNF-integrated patient networks to improve survival analyses. Here,
SNF-integrated networks can be leveraged as an additional input, to predict similar survival scores for
similar patients (based on their integrated similarity scores) [2].

The current state of similarity network fusion in respiratory medicine
SNF has been successfully implemented in the integration of multi-omic data from the same group of
patients using distinct molecular profiling methods or the assessment of distinct anatomical locations to
better understand and characterise respiratory disease [10, 15]. SNF can identify “high-risk” bronchiectasis,
while multi-omics analysis in COPD illustrates that integrating multiple -omics through SNF allows for a
more accurate classification of a COPD diagnosis, even with small groups of individuals, over and above
that achievable by “mono-omic” approaches [4, 16]. Work from our group further illustrates the added
precision from multi-biome integration, i.e. bacteria, viruses and fungi, by SNF in bronchiectasis [4]. SNF
is further valued as a potential integrative approach to endotype severe asthma and is currently being used
to better understand sub-phenotypes of severe asthma by combining -omics datasets, including
transcriptomics, proteomics, lipidomics and metabolomics [15, 17–19].

The advantages and limitations of similarity network fusion
Integrating multiple -omic datasets by SNF accumulates more information and therefore improves cluster
precision and accuracy [4]. This process inherently down-weights “noise” if given enough -omic datasets
and provides power to detect rarer subgroups from relatively small cohorts [16]. The number of variables
or heterogeneity of the dataset does not influence SNF workflows as the similarity patient network is
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constructed based on each -omic dataset before integration. Missing data is also tolerated, provided that an
appropriate similarity metric is implemented.

SNF assumes equal weights to different -omic datasets, and this may not be biologically appropriate since
not all datasets characterise or represent the underlying disease pathology to the same extent. It is not
always straightforward to identify a biologically relevant similarity measure for a given dataset, and the
similarities calculated using Euclidean distances may not capture the topology of the data space and hence
true biological similarities. SNF solely utilises similarity information between patients of an integrated
network and clustering on this network offers no information on what combination of biological features
cluster individuals. While clustering the integrated patient networks groups patients from clinically relevant
disease-subtypes, it does not provide direct ways of delineating what combination of biological features,
used during integration, define these subtypes. However, this can be achieved by secondary analysis such as
normalised mutual information [2], or predictive modelling followed by model explainability techniques [20].

While modifications to SNF, including integrative network fusion (INF), affinity network fusion (ANF),
similarity kernel fusion (SKF), association-signal-annotation boosted similarity network fusion (ab-SNF),
robust similarity network fusion (RSNF), local scaling similarity network fusion (Ls-SNF) and weighted
similarity network fusion (wSNF), can all improve the various limitations of SNF, no single integrative
approach is best, and each has to be considered in terms of “best-use case” and its own inherent
advantages and limitations [4, 11, 21–25]. It is also important to note that SNF-derived associations are
still inferred, and experimental manipulations are required to definitively confirm causation. To date, SNF
has been most widely applied in respiratory medicine, however, given the emerging disease heterogeneity
in chronic respiratory disease and the increasing complexity of data obtained from a single clinical
specimen, it is imperative that consensus and standardisation is reached for these methodologies. The
development of accessible and reproducible software such as https://integrative-microbiomics.ntu.edu.sg/
will further assist in harnessing the value of multi-omic technologies for better translation in respiratory
disease [4].

Conclusion
SNF and its associated methods are emerging as a key approach to integrate multi-omic and microbiome
datasets in respiratory medicine [1, 4, 17–19, 26]. Given its advantages, we expect its use to further
increase over the next decade to facilitate an improved understanding of respiratory disease pathogenesis
and its associated patient endophenotypes, potentially offering a method for the application of precision
medicine into clinical care.
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