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To the Editor:

In asthma, abnormal mechanical properties of the airways and lung tissue leads to airway narrowing and
changes in ventilation distribution [1]. Ventilation distribution is determined by the variation of time
constants [2], the product of resistance and static compliance of individual lung units. Ventilation
distribution is heterogeneous in healthy lungs, but even more so in airway diseases, including asthma [3].
This is because time constants are often even more heterogeneous in disease due to changes in resistances
and compliances [3, 4]. Lung compliance measured under dynamic conditions, e.g. during breathing
(dynamic compliance, or Cgyy,), is sensitive to these heterogeneities in time constants. Cgy, decreases
relative to static compliance (Cyy,) with increasing ventilation heterogeneity [2, 3, 5], due to diversion of
ventilation from lung units with longer to those with shorter time constants [6]. Hence Cgyy, is a measure of
lung function in relation to ventilation heterogeneity under tidal breathing conditions, that complements
spirometry. However, Cgy, is not used clinically because it requires invasive oesophageal pressure
measurements.

The forced oscillation technique, also known as oscillometry, provides another measure of dynamic
compliance. Oscillometry is a method of measuring respiratory system mechanics, which includes
mechanics of the chest wall, lung and airways. Pressure oscillations (typically frequencies between 5 and
19 Hz) that are higher than typical breathing rates are imposed at the airway opening during normal,
relaxed breathing [7]. During oscillometry measurements, the relationship between pressure change and
resultant airflow allow both respiratory system resistance (R,) and reactance (X;) to be derived.
Oscillometry measurements at low frequency, being physiologically and clinically important, are
commonly made at around 5 Hz. X, has compliance and inertial components but at low frequencies, is
dominated by compliance with little contribution from inertance. The lower the compliance, the more
negative X;. Similar to Cgy,, modelling studies suggest that compliance measured via oscillometry is
highly sensitive to heterogeneity in time constants [5]. Cqy, and oscillometry are measured at different
frequencies, which can account for the variation in measurements. However, there is a degree of physical
similarity between Cyy,, and oscillometry because of the way in which they are derived. During breathing a
person generates their own flow and compliance is measured at the peaks and troughs of volume (i.e. at
zero flow). During oscillometry measurement, flows are generated externally, and compliance is derived
from the “out of phase” flow (i.e. during the peaks and trough of flow oscillation at zero pressure). Thus,
X.s should be related to Cgy, of the lung, with lower dynamic compliance (represented by lower, more
negative Xi,) correlating with lower Cgy,,. Having experimental data confirming this theoretical relationship
in asthma would strongly inform clinical interpretation of X, in this condition.

Therefore, the aim of this study was to assess relationships between X5 at 5 Hz (Xs), static (Cga) and
dynamic (Cgyn) lung compliance in non-smokers with asthma and fixed, non-reversible airflow obstruction
(FAO). These individuals typically have more negative X5, increased Cg, and increased ventilation
heterogeneity [1]. We hypothesised that in this cohort, X5 relates to Cqy, rather than to Cg at resting and
higher breathing rates. Cg, and X5 data from this cohort have been previously published [4], however the
Cayn data and its relationships with Cg, and X5 are novel.
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We enrolled participants from tertiary hospital clinics who were >40 years old, had <5 pack-years smoking
history and a physician-diagnosis of asthma [4]. To minimise inflammation, all participants were treated
with 2 months of maximal dose inhaled corticosteroid/long-acting beta-agonist (ICS/LABA) using a
fluticasone/eformoterol 250 pg/10 ug metered dose inhaler, two puffs twice daily. At the end of the
2-month treatment, participants performed standard lung function tests according to European Respiratory
Society/American Thoracic Society standards [8, 9]. Oscillometry was performed as previously described
[4]; Rs and X5 were expressed as z-scores [10]. Cg, was measured using oesophageal manometry as
previously described [4]. In brief, the static pressure—volume (P—V) curve was constructed from points
obtained during at least five interrupted deflation manoeuvres from total lung capacity to functional
residual capacity (FRC) [1]. Cgg was calculated as the slope of the deflation static P-V curve between
FRC and FRC +1L [11]. C4y, was measured at breathing frequencies of 15, 30 and 60 breaths-min™"
(bpm), and calculated by dividing the volume change by the pressure change, between the points of zero
flow at end-inspiration and at end-expiration. The average of a minimum of 10 breaths at each breathing
rate was used. Ethics approval was granted by the Sydney Local Health District Human Research Ethics
Committee (HREC/14/CRGH/75).

Correlations between X5 and Cg, and Cgy, were assessed using Spearman’s rank test. The transformation
to —1/Xs was used since it is linearly (and positively) proportional to compliance [12, 13]. All data were
analysed using SPSS Statistics v26 (IBM, Armonk, NY, USA).

18 participants with asthma (meantsp age 64.1+8.0 years) were enrolled. All were taking ICS+LABA.
Mean forced expiratory volume in 1 s/forced vital capacity (FEV,/FVC) z-score was —2.6+0.7. There was
moderate to severe impairment of impedances, with median (interquartile range) Rs and X5 z-scores of 2.7
(1.9-3.2) and —4.1 (-7.3-2.4), respectively. Cg, median (interquartile range) was 0.221 (0.177-
0.287) L-cmH,0™". Cayn was frequency dependent, being significantly less with increasing breathing
frequency: 0.094 (0.067-0.125) L-cmH,0™" at 15 bpm, 0.052 (0.047-0.065) L-cmH,0O~" at 30 bpm and
0.037 (0.028-0.044) L-cmH,O ! at 60 bpm (p<0.0001). Cqy, expressed as a % of Cg at each breathing
frequency (normal cut off defined as >80%) [3] were 39% (30-69%), 22% (16-33%) and 15% (10-34%),
respectively, and differed significantly from each other (p=0.001).

Reactance (expressed as —1/Xs) was unrelated to Cgy (p=0.2) but was related to Cgy, at all breathing
frequencies (rs=0.72, p=0.001 at 15 bpm; r,=0.79, p<0.0001 at 30 bpm; and r,=0.60, p=0.009 at 60 bpm)
(figure 1). Cayn/Csa ratio, however, was not related to —1/Xs (p=0.09, p=0.25 and p=0.62, respectively).
Cayn and Cayn/Cqa at all breathing rates and —1/Xs were all unrelated to FEV,/FVC or FEV,/FVC z-score
(p=0.10). Increasing breathing rates were associated with increasing FRC. Meantsp FRC was
3.89+1.09L, 4.14+1.08 L and 4.49+1.08 L at 15, 30 and 60 bpm, respectively (p<0.001). Differing FRCs
however, were unrelated to Cgyy, (p>0.30).

In summary, in this cohort of older non-smokers with asthma and FAO, we confirmed theoretical
predictions that X5 is a marker of Cyy, rather than of Cg,. As such, X5 is a marker of ventilation
heterogeneity, which was present in these asthmatic participants with FAO.

Our findings are consistent with those of OppenHEMER et al. [14], who also demonstrated a correlation
between X5 and Cgy, at 60 bpm, and similarly an absence of correlation between Xs and Cg,. They
reported results only at 60 bpm and so it is uncertain if this relationship was also present at lower breathing
rates that we reported. The participants in their study were younger than in our study, had a variety of
respiratory symptoms and diagnoses, but normal spirometry [14]. Because of FAO in our subjects, Cgayyn
was reduced even at low breathing rates, consistent with worse ventilation heterogeneity, which may have
allowed us to see relationships at lower breathing rates.

While at the low breathing rates Cgy,, is brought closer to Ci,,, indicating the presence of slowly ventilating
lung units, the Cgyn/Csy ratio was not related to Xs. This may be surprising given the correlation between
Cayn and Xs. However, it may suggest that at the breathing rates studied, the contribution to both Cgy, and
Xs from heterogeneity in time constants within the lung is greater compared to the contribution from the
overall elastic properties of the chest wall and lung (which are the main determinants of Cg,). It would
also explain why Cyg, is poorly correlated with Xs.

Dynamic hyperinflation occurred with increasing breathing rates. This is not surprising given the presence
of FAO in many of the participants. However, increasing FRC was unrelated to Cgy,,. Interestingly, both
—1/Xs and Cgy, were unrelated to spirometric obstruction, suggesting that physiological and clinical
significances of dynamic compliance and spirometry may be independent.
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FIGURE 1 Correlations between —1/Xs and a) static compliance (Cgat), and dynamic compliance at
b) 15 breaths'min™ (Cayn15), ¢) 30 breaths:min™" (C4,,30) and d) 60 breaths:min™* (C4,,60).

In conclusion, X5 measured by oscillometry reflects dynamic compliance during spontaneous breathing in
non-smokers with asthma and FAO. X5 is commonly thought to reflect the elastic properties of the
respiratory system, assumed to be its static properties. Our findings show that in asthma with FAO, X5
reflects dynamic rather than static compliance. It is important to distinguish between static and dynamic
compliance, because they reflect different determinants and, therefore, have different clinical implications.
Thus, our findings suggest that X5 is sensitive to heterogeneous time constants, an important functional
abnormality in asthma. This physiological relationship aids clinical interpretation of oscillometry
measurements in asthma and supports its use as a clinically useful parameter in practice and airways research.
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