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Variable Selection for Cluster Model 

Assessment of the initially selected 25 Toronto CF (TCF) variables resulted in the exclusion of 

age at diagnosis, ivacaftor, ethnicity, sex, functional class, pancreatic insufficiency (PI), CF-

related diabetes (CFRD) and inhaled antibiotics. Age at diagnosis is less relevant to the CF 

population since the introduction of new-born screening. There was minimal data for children on 

ivacaftor and therefore was not a representative descriptor of the population. Ethnicity, sex, 

functional class, and PI are difficult to coerce into continuous variables and are largely time 

independent so would provide minimal information on the transition between clusters over time. 

Functional class and PI are also heavily dominated by classes I-III (94%) and pancreatic 

insufficiency (92%) and would therefore provide minimal information on variation in the 

population for defining clusters. Furthermore, the goal of the analysis was to describe all children 

with CF and to not exclude those without a defined functional class for their mutation. CFRD 

and inhaled antibiotics were additionally excluded as a result of their categorical nature and were 

used to corroborate the disease severities of each cluster since they both represent the 

development of severe disease. 

Weight was excluded due to a strong association with body mass index (BMI) (r = 0.83). 

Pulmonary exacerbation (PEx) treated with IV antibiotics in prior year were excluded over 

hospitalisations in prior year (r = 0.8) since hospitalisations encompass most PEx events as well 

as additional complications. Height and BMI were not strongly correlated (r = 0.3), and therefore 

neither was excluded. In the PCA, the first two principal components combined to explain 24.4% 

of the variance; the variables with the smallest component loadings which were therefore 

excluded were deprivation, and rates of previous infection with Achromobacter sp., Methicillin 
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Resistant S. aureus (MRSA) and B. cepacia complex. The specific microbiology exclusions were 

further confirmed by the research team, since very few visits (< 3%) had positive cultures. 

The variable exclusions resulted in 11 variables available for iterative clustering: BMI, height, 

PEx treated with oral antibiotics, hospitalisations in prior year, cough, age, and previous rates of 

infection with Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas sp., 

Haemophilus influenzae, and Aspergillus sp.. 

Cluster Analysis 

Between 3-5 clusters were defined for each combination of variables using Partitioning Around 

Medoids (PAM) cluster analysis. The iterative cluster methods meant that 1981 cluster models 

were developed, and while it would be advantageous to calculate the optimal cluster number for 

every model using a cluster index (such as silhouette width or elbow method), and then cluster 

every model based on its optimal cluster number, these methods would be drastically limited by 

computer processing time. Therefore, instead of choosing the optimal number of clusters for a 

single data set, the dataset that was optimal for the small range of clusters was identified. 

In detail, missing values were excluded from each combination of variables, variables were 

normalised between 0-1, and Euclidean distance was calculated as the measure of dissimilarity 

between all clinical encounters. The average silhouette width, a measure of within cluster 

similarity and between cluster dissimilarity, of each cluster model was ranked. The models with 

the highest silhouette widths were selected for visualisation using t-SNE plots (a dimensionality 

reduction technique) [1]. 

In total, 5943 cluster models were developed (1981 models per cluster number), which were 

composed of between 12467 – 31218 encounters comprising 525 – 681 individuals. The models 
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ranged widely in silhouette widths and t-SNE plots, in which variable number was found to 

strongly influence the quality of clusters. Higher numbers of variables included in the models 

resulted in robust t-SNE plots with lower silhouette widths compared to models with low 

variable numbers (Figure S1). 

 

Figure S1. t-SNE plots of A) the optimal model with good cluster distinctions (9 variables: body 

mass index (BMI), height, hospitalisations in prior year, cough, and previous rates of infection 

with Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas sp., Haemophilus 

influenzae, and Aspergillus sp) and B) a poor cluster model with disjointed clusters (4 variables: 

BMI, cough, OPEx, Aspergillus sp.) 

 

Time to Event Analyses 

Time-to event analyses were conducted using a Cox proportional hazards regression [2]. 

Specifically, a marginal means and rates model was used for risk of recurrent PEx and 

hospitalization events [3], and a standardized survival model was used to calculate risk of death 

and transplant from an individual’s first cluster assignment [4]. The analyses were carried out on 

the top 36 models identified from silhouette widths and t-SNE plots. The outcome analysis also 
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varied widely across models, where higher numbers of variables contributed to better models 

(lower Bayesian information criterion (BIC)) on average. Strong separation in mild outcomes 

(time-to hospitalisation and time-to PEx treated with oral antibiotics) were prioritised over a 

strong separation in severe outcomes (time-to death and time-to transplant). 

Optimal Cluster Model 

Table S1. Description of clinical variables and patient characteristics of encounters included in 

the optimal cluster model; mean(SD) unless otherwise stated. 

Variable Mean (SD) Range 

Age 10.79 (4.38) 2 - 18 
BMI Z Score -0.31 (1.04) -9.15 - 4.38 
Height Z Score -0.44 (1.02) -5.41 - 3 
Weight Z Score -0.49 (1.11) -7.58 - 4.15 
P. aeruginosa 0.18 (0.27) 0 - 1 
S. aureus 0.33 (0.23) 0 - 1 
B. cepacia complex 0.01 (0.08) 0 - 1 
Achromobacter sp. 0.01 (0.05) 0 - 0.94 
Aspergillus sp. 0.09 (0.16) 0 - 1 
H. influenzae 0.09 (0.11) 0 - 1 
Stenotrophomonas sp. 0.04 (0.1) 0 - 1 
Methicillin Resistant S. aureus 0.01 (0.06) 0 - 1 
PEx treated with IV antibiotics 

in Prior Year 
0.37 (0.82) 0 - 11 

PEx Treated with Oral 

Antibiotics in Prior Year 
1.19 (1.28) 0 - 8 

Hospitalisations in Prior Year 0.46 (0.96) 0 - 10 
Ontario Marginalisation Index 2.34 (1.22) 1 - 5 
Age at Diagnosis 1.44 (2.46) 0 - 16.3 
Cough 3.02 (1.16) 1 - 5 
FEV1 % Predicted 79.29 (21.13) 16.26 - 146.58 
Class I-III n(%) 11248 (92.2)  
Female n(%) 6370 (52.2)  
PI n(%) 11205 (91.8)  
White n(%) 10845 (88.9)  
Ivacaftor n(%) 194 (1.6)  
CFRD n(%) 546 (4.5)  
Chronic Inhaled Antibiotics 

n(%) 
2591 (21.2)  
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 Cluster prediction of Future FEV1 

Table S2. Coefficients and confidence intervals for the predicted rate of change in FEV1 % 

predicted over 1 year stratified across clusters. 

 Time Age Time * Age SD 

Cluster A -3.36 (-7.57 - 0.84) -1.72 (-2.08 - -1.36) 0.15 (-0.17 - 0.047) 0.97 

Cluster B 0.81 (-1.47 - 3.10) -1.61 (-1.81 - -1.42) -0.08 (-0.25 - 0.10) 7.08 

Cluster C -5.77 (-9.47 - -2.06) -0.17 (-0.58 - 0.25) 0.26 (0.00 - 0.51) 6.09 

Cluster D 13.24 (8.75 - 17.73) -2.14 (-2.55 - -1.74) -0.67 (-0.99 - -0.35) 9.64 

Internal Validation 

Using a K-Nearest Neighbours approach, Euclidean distance between new data and the centre of 

each cluster is determined to identify which cluster the new data resembles most. This was 

carried out using a Nearest Neighbours kd-tree searching algorithm [5]. 
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GOSH Data Exclusions 

 

Figure S2. Description of data exclusions for the GOSH Data 

External Validation 

Table S3. Hazards ratios and confidence intervals for each cluster as compared to cluster A 

across the GOSH and Revised TCF validation time-to hospitalisation analysis. Bold values are 

significant (p < 0.05) 

 
Hospitalisation 

GOSH 
Hospitalisation 

Revised TCF 

Cluster B 2.15 (1.15-4.02) 1.28 (0.81-2.03) 

Cluster C 3.64 (2.01-6.59) 1.51 (0.91-2.51) 

Cluster D 6.13 (4.16-9.02) 3.97 (2.45-6.42) 
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