

Phospholipase A2 receptor 1 promotes lung cell senescence and emphysema in obstructive lung disease

Delphine Beaulieu^{1,6}, Aya Attwe^{1,2,6}, Marielle Breau¹, Larissa Lipskaia¹, Elisabeth Marcos¹, Emmanuelle Born¹, Jin Huang¹, Shariq Abid¹, Geneviève Derumeaux¹, Amal Houssaini¹, Bernard Maitre¹, Marine Lefevre³, Nora Vienney¹, Philippe Bertolino ⁰, Sara Jaber⁴, Hiba Noureddine², Delphine Goehrig⁴, David Vindrieux⁴, David Bernard^{4,7} and Serge Adnot^{1,5,7}

¹INSERM U955, Département de Physiologie-Explorations Fonctionnelles and DHU A-TVB Hôpital Henri Mondor, AP-HP, Créteil, France. ²Environmental Health Research Laboratory (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon. ³Département Anatomopathologie, Institut Mutualiste Montsouris, Paris, France. ⁴Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052/CNRS 5286, Université de Lyon, Centre Léon Bérard, Lyon, France. ⁵Institute for Lung Health, University of Giessen, Germany. ⁶These two authors contributed equally. ⁷These two authors are joint senior authors.

Corresponding author: Serge Adnot (serge.adnot@inserm.fr)

Shareable abstract (@ERSpublications)

PLA2R1 is a potent regulator of lung cell senescence in COPD, with JAK/STAT signalling as a major effector. Inhibition of JAK1/2 attenuates PLA2R1-induced lung alterations in murine models and so may represent a promising therapeutic approach for COPD. http://bit.ly/3i7yT3H

Cite this article as: Beaulieu D, Attwe A, Breau M, *et al.* Phospholipase A2 receptor 1 promotes lung cell senescence and emphysema in obstructive lung disease. *Eur Respir J* 2021; 58: 2000752 [DOI: 10.1183/13993003.00752-2020].

This single-page version can be shared freely online.

Copyright ©The authors 2021. For reproduction rights and permissions contact permissions@ersnet.org

This article has supplementary material available from erj.ersjournals.com

Received: 18 March 2020 Accepted: 28 Dec 2020

Abstract

Background Cell senescence is a key process in age-associated dysfunction and diseases, notably chronic obstructive pulmonary disease (COPD). We previously identified phospholipase A2 receptor 1 (PLA2R1) as a positive regulator of cell senescence acting *via* Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling. Its role in pathology, however, remains unknown. Here, we assessed PLA2R1-induced senescence in COPD and lung emphysema pathogenesis.

Methods We assessed cell senescence in lungs and cultured lung cells from patients with COPD and controls subjected to *PLA2R1* knockdown, *PLA2R1* gene transduction and treatment with the JAK1/2 inhibitor ruxolitinib. To assess whether *PLA2R1* upregulation caused lung lesions, we developed transgenic mice overexpressing *PLA2R1* (*PLA2R1*-TG) and intratracheally injected wild-type mice with a lentiviral vector carrying the *Pla2r1* gene (LV-*PLA2R1* mice).

Results We found that *PLA2R1* was overexpressed in various cell types exhibiting senescence characteristics in COPD lungs. *PLA2R1* knockdown extended the population doubling capacity of these cells and inhibited their pro-inflammatory senescence-associated secretory phenotype (SASP). PLA2R1-mediated cell senescence in COPD was largely reversed by treatment with the potent JAK1/2 inhibitor ruxolitinib. Five-month-old *PLA2R1*-TG mice exhibited lung cell senescence, and developed lung emphysema and lung fibrosis together with pulmonary hypertension. Treatment with ruxolitinib induced reversal of lung emphysema and fibrosis. LV-*PLA2R1*-treated mice developed lung emphysema within 4 weeks and this was markedly attenuated by concomitant ruxolitinib treatment.

Conclusions Our data support a major role for PLA2R1 activation in driving lung cell senescence and lung alterations in COPD. Targeting JAK1/2 may represent a promising therapeutic approach for COPD.