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New findings for the puzzle of bronchiolitis obliterans syndrome (BOS) are pointing to the role of
CatB-procollagen-TGF-β signalling pathways, linked to fibrosis mechanisms and tissue damage
control https://bit.ly/3qQPax9
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While the experience of lung transplantation (LTx) is growing worldwide, long-term outcomes are not
improving accordingly. Next to oncological and infectious complications, chronic rejection, clinically
defined as chronic lung allograft dysfunction (CLAD), remains the major bottleneck to improving
long-term outcomes [1, 2]. Increased recognition of clinical phenotypes of CLAD assists in predicting
patient prognosis; however, mechanistically, we are still far from unravelling the pathophysiological
processes underlying CLAD. Indeed, the internationally endorsed recognition of an obstructive
(bronchiolitis obliterans syndrome; BOS) and restrictive (restrictive allograft syndrome; RAS) phenotype of
CLAD leads us to critically review historical mechanistic studies, as these are not focused on separate
phenotypes [1, 3]. Whether both phenotypes share common pathophysiological mechanisms remains
unknown; however, obliterative bronchiolitis (OB), pathological scarring of the small airways, is found in
both phenotypes in varying degrees and is therefore a major target for further research because adequate
therapy is lacking [4]. One of the major reasons for this poor knowledge of the mechanism of CLAD has
been the lack of an adequate animal model of CLAD. Indeed, animal models are key for our further
understanding of pathophysiological mechanisms. Although the initially proposed heterotopic trachea
transplant model has its merits, the scientific community was especially intrigued by the murine
orthotopic left LTx, as this was regarded as the ultimate model of CLAD. Key pathological findings include
peribronchial inflammation, peribronchial thickening, vascular rejection and alveolar fibrosis.

The high prevalence of BOS in patients with allogenic mismatch of the lung and haematopoietic cells (i.e.
lung and bone marrow transplant recipients) [5], indicates a crucial role for alloimmune injuries in the
development of OB. Both alloimmune T- and B-cell reactivity have been demonstrated as the main
triggers of the pathological cascades inducing airflow limitation observed in BOS [6–8], associated with
autoimmunity after exposition of sequestered self-antigens resulting from immune or nonimmune tissue
insults [9]. Given this pivotal role of allo- and autoimmunity in BOS development, most therapies
developed in human BOS post-LTx to date have focused on anti-T- and anti-B-cell therapies, or therapy
directed against the complement cascade resulting from antibody-mediated rejection [10–12].

Received: 22 Dec 2020 | Accepted: 19 Jan 2021

Copyright ©The authors 2021. For commercial reproduction rights and permissions contact permissions@ersnet.org

https://doi.org/10.1183/13993003.04607-2020 Eur Respir J 2021; 57: 2004607

| EDITORIAL
BASIC SCIENCE

https://orcid.org/0000-0002-3500-5253
mailto:o.brugiere@hopital-foch.com
https://bit.ly/3qQPax9
https://bit.ly/3qQPax9
https://doi.org/10.1183/13993003.04607-2020
https://doi.org/10.1183/13993003.04607-2020
mailto:permissions@ersnet.org
https://crossmark.crossref.org/dialog/?doi=10.1183/13993003.04607-2020&domain=pdf&date_stamp=


More recently, attention has been paid to mechanisms of tissue damage control involved in OB, linked to
the dysregulated fibrotic repair observed after graft injuries (i.e. colonisation or infection with
micro-organisms [12]), and presumed to drive mesenchymal cell infiltration and collagen deposition. This
dysregulated fibrotic repair is well-evidenced by histological features of BO, with architectural remodelling
and scarring of the airways [13], involving increased accumulation of myofibroblasts [14], increased
extracellular matrix (ECM) synthesis [15, 16], epithelial–mesenchymal transition (EMT) [16–18], and
increased protein levels of platelet derived growth factor, vascular endothelial growth factor, fibroblast
growth factor and insulin-like growth factor [16, 19–22].

One molecule that has always drawn interest in the fibrotic cascade is transforming growth factor-β
(TGF-β) [8, 16]. Its profibrotic role and importance in idiopathic pulmonary fibrosis (IPF) has also
triggered interest in the LTx community. While a recent study has implicated TGF-β specifically in RAS as
an inducer of mesothelial-to-mesenchymal transition [8], its role in BOS was previously suspected where
positive TGF-β staining on transbronchial biopsies preceded the histological confirmation of OB by 6–18
months [23]. Linked to the TGF-β profibrotic pathway, cathepsine B (CatB), a cysteine protease negatively
regulated by its endogenous inhibitor cystatin-C (CystC), was also previously demonstrated to implement
TGF-β1 signalling and its level is significantly increased during lung [24–26] and liver fibrosis [27, 28].

In this issue of the European Respiratory Journal, MORRONE et al. [29] investigates the CatB–procollagen–
TGF-β axis in the field of BOS post-LTx. The authors used serial bronchoalveolar lavage (BAL) samples,
explant tissues from human LTx recipients, a murine orthotopic LTx model and in vitro experiments with
cell lines. They found a BOS stage-dependent increase in CatB and pro-collagen 1 levels in BAL in
LTx-recipients, while the number of CystC-positive cells significantly decreased in explanted lung from
end-stage BOS patients as compared to controls, indicating that CatB activity is crucial for collagen
expression. This observation was further confirmed in the murine orthotopic LTx model, in which CatB
and collagens were already upregulated 14 days after transplantation and where orthotopic transplantation
in CatB-/- mice significantly reduced histopathological and physiological features of graft rejection. A
suspected mode of action is shown in figure 1.

To date, the importance of cathepsins and CystC in organ fibrosis has been somewhat controversial.
Because cathepsins can digest ECM proteins, they are expected to reduce the fibrotic burden. However, the
fibrosis-promoting effects of CatB have been demonstrated in lung [24–26] and liver fibrosis [27, 28] by
facilitating TGF-β-driven differentiation of fibroblasts [26, 30]. Accordingly, given that it potently inhibits
cysteine proteases, such as cathepsins, CystC is expected to stimulate fibrosis by inhibiting the
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FIGURE 1 Proposed mechanism of action as investigated by MORRONE et al. [29], where a series of insults lead
to cathepsin-loaded macrophages infiltrating the airways. These recipient-derived macrophages will interact
to release transforming growth factor (TGF)-β, attracting active (myo-)fibroblasts from different sources,
which will produce collagen 1 and eventually obliterate the complete airway lumen.
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protease-mediated digestion of ECM [27, 28]. In contrast, and in accordance with findings of MORRONE

et al. [29] in this issue, CysC expression was found markedly reduced in mouse and human lungs with
interstitial fibrosis [31], and was suggested as a potential therapy in lung fibrosis.

Additionally, MORRONE et al. [29] found CatB most often in macrophages, again putting the macrophage at
the centre stage of BOS development and progression. Further in vitro experiments specifically indicated
the M1 macrophages to be involved in the cathepsin–TGF-β axis, resulting in the activation of fibroblasts,
in line with previous in vitro evidence that tumour necrosis factor-α from activated macrophages
accentuates EMT [17]. Indeed, while the macrophage is often neglected as a key player in the
pathophysiology of BOS, other recent evidence indicates that the recipient-derived mononuclear phagocyte
system gives rise to the majority of myofibroblasts found in occluded airways of OB [32]. The origin of
these myofibroblasts in OB remains highly controversial [33, 34], and previous studies suggested that these
can arise from the donor [33, 35–37], for example via EMT [17, 18]. However, an increasing body of
evidence has now demonstrated their predominant recipient origin [32, 38, 39], as confirmed by the
finding of an increased proportion of myofibroblasts expressing the macrophage marker CD68 in BOS
explants, as compared to controls [32]. In the most likely scenario, the combination of recipient- and
donor-derived factors account for the onset and progression of BOS [40].

One particular interesting finding from the MORRONE et al. [29] study also included that the clear
association between decreased levels of CystC and increased CatB activity was specifically valid in patients
with a history of pulmonary fibrosis. This was further validated in different existing single-cell
RNA-sequencing datasets, which demonstrated that CatB expression in macrophages was increased in lung
fibrosis patients, indicative of a higher bio-availability of CatB in pulmonary fibrosis patients. This finding
might be specifically relevant given that the outcome post-LTx in pulmonary fibrosis patients is inferior to
that for other common indications for LTx [41]. The reason remains unknown but higher bio-availability
of CatB could be important to answer this question, especially since this might be therapeutically
modulated. This finding, if validated, could be also be relevant for future biomarker research within the
pulmonary fibrosis field as well.

Other important areas of further validation include the importance of the CatB–procollagen–TGF-β axis
in RAS. In BOS, only the airways are affected by fibrosis formation, whereas in RAS, the fibrotic response
is not only limited to the airways; the mesothelium and alveoli are also involved. Therefore, CatB could be
of even more importance in RAS, especially because TGF-β concentrations in BAL and tissue are high in
RAS and are associated with outcome for these patients [8]. Additionally, the murine orthotopic LTx
model is thought to show features that are more reminiscent of RAS, with increased collagen
accumulation, septal inflammation and fibrosis, decreased elastance, and increased compliance [42].

Hence, most current therapies in BO are directed towards its known immune and non-immune triggers,
but the MORRONE et al. [29] study adds new findings for the puzzle of BOS/OB development and potential
target therapies, pointing to the CatB signalling pathways linked to fibrosis mechanisms and tissue damage
control. Anti-fibrotic therapies approved in slowing down IPF and non-IPF interstitial lung diseases [43–
45] are already under evaluation in BOS post-LTx in placebo-controlled trials (pirfenidone in the EPOS
study: ClinicalTrials.gov identifier NCT02262299; nintedanib in the infinitixBOS study: ClinicalTrials.gov
identifier NCT03283007). However, specific CatB-triggered therapy in BOS patients may open new
avenues in the near future. MORRONE et al. [29] bring a strong basis to further investigate this specific
pathway in LTx recipients affected by BOS and eventually RAS, and a glimpse of hope to turn the balance
in the everlasting battle with CLAD post-LTx.
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