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ABSTRACT
Introduction: Implementation of low-dose chest computed tomography (CT) lung cancer screening and
the ever-increasing use of cross-sectional imaging are resulting in the identification of many screen- and
incidentally detected indeterminate pulmonary nodules. While the management of nodules with low or
high pre-test probability of malignancy is relatively straightforward, those with intermediate pre-test
probability commonly require advanced imaging or biopsy. Noninvasive risk stratification tools are highly
desirable.
Methods: We previously developed the BRODERS classifier (Benign versus aggRessive nODule Evaluation
using Radiomic Stratification), a conventional predictive radiomic model based on eight imaging features
capturing nodule location, shape, size, texture and surface characteristics. Herein we report its external
validation using a dataset of incidentally identified lung nodules (Vanderbilt University Lung Nodule
Registry) in comparison to the Brock model. Area under the curve (AUC), as well as sensitivity, specificity,
negative and positive predictive values were calculated.
Results: For the entire Vanderbilt validation set (n=170, 54% malignant), the AUC was 0.87 (95% CI
0.81–0.92) for the Brock model and 0.90 (95% CI 0.85–0.94) for the BRODERS model. Using the optimal
cut-off determined by Youden’s index, the sensitivity was 92.3%, the specificity was 62.0%, the positive
(PPV) and negative predictive values (NPV) were 73.7% and 87.5%, respectively. For nodules with
intermediate pre-test probability of malignancy, Brock score of 5–65% (n=97), the sensitivity and
specificity were 94% and 46%, respectively, the PPV was 78.4% and the NPV was 79.2%.
Conclusions: The BRODERS radiomic predictive model performs well on an independent dataset and
may facilitate the management of indeterminate pulmonary nodules.
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Introduction
Lung cancer remains the deadliest malignancy in the United States (US) and worldwide [1]. While lung
cancer 5-year survival has improved over the past decade, >50% of all lung cancer cases continue to be
diagnosed at advanced stages. This is at least in part attributable to the lack of widespread implementation
of lung cancer screening [2]. Several recent large lung cancer screening studies, the National Lung
Screening Trial (NLST) in the US, the European Multicentric Italian Lung Detection (MILD) study and
Nederlands-Leuvens Longkanker Screenings ONderzoek (NELSON) trial have demonstrated that low-dose
computed tomography (LDCT) screening can reduce lung cancer mortality in high-risk patients [3–5].
However, even in the US, despite endorsement by the Center for Medicare & Medicaid Services and the
United States Preventive Services Task Force, the clinical implementation and acceptance of LDCT
screening remains suboptimal [6]. One of the main clinical challenges remains the high rate of false
positive results, as almost all detected pulmonary nodules are benign. Other obstacles include the diagnosis
of indolent lung cancer (overdiagnosis), uncertainty about optimal patient selection, screening intervals
and duration, as well as concerns about cost-effectiveness [7]. While high false positive rates (96% of all
screen-detected nodules ⩽4 mm were false positives in the NLST) can be improved by the application of
Lung Imaging Reporting and Data System (Lung-RADS) criteria and the updated Fleischner Society
nodule management guidelines for screen- and incidentally detected indeterminate pulmonary nodules
(IPNs), these are associated with a decreased sensitivity [8, 9]. For example, while Lung-RADS reduces the
false positive rate to 5.3%, it also reduces sensitivity by ∼10% [10].

In addition to screen-detected IPNs, incidentally discovered IPNs are on the rise. This development is due
to increased utilisation of diagnostic cross-sectional chest imaging and the more widespread availability of
advanced high-resolution computed tomography. Approximately 12 million chest CT studies are
performed annually in the US and based on data from 2006 to 2012, it has been estimated that
∼1.5 million adult Americans will be diagnosed with a pulmonary nodule annually [11]. The magnitude of
the clinical challenges of noninvasively classifying screen- and incidentally detected IPNs highlights the
urgent need for improved diagnostic tools.

Radiomics is a rapidly emerging field. It involves quantitative image analysis to objectively and
reproducibly analyse imaging data [12] to identify predictive and descriptive radiological features not
otherwise evident to a human observer that may correlate with the biological behaviour of the lesion
analysed. While radiomic approaches were conceived as early as the 1950s [13], the increased availability
of inexpensive and powerful computing hardware [14] has generated considerable interest in lung nodule
analysis in the past decade [15]. However, there is great variability in image acquisition, feature extraction
methodology and statistical modelling across the many radiomic models described in literature, and, so far,
no radiomic model has been integrated into routine clinical practice [16]. Furthermore, it is unclear
whether conventional radiomic approaches, whereby expert-selected radiomic variables are used to derive a
multivariate prediction model via regression analysis, unsupervised deep-learning approaches or a
combination of these two methodologies will ultimately prove more clinically useful.

Many promising radiomic models for IPNs have been proposed, but few have been successfully validated
on independent, external cohorts either due to the lack of access to readily available, well-curated datasets,
or because of the risk of overfitting that particularly pervades radiomic models. In addition, CT datasets
are typically heterogeneous, characterised by substantial variability in scanner technology, image
acquisition and reconstruction [17]. Thus, it is unclear whether such models outperform validated simpler
and readily accessible clinical prediction models [18].

Using a training set of 726 IPNs from the NLST database, we previously developed and internally
validated the BRODERS classifier (Benign versus aggRessive nODule Evaluation using Radiomic
Stratification), a radiomic classifier that effectively distinguishes benign from malignant nodules [19].
Herein we report the successful validation of this classifier in an independent dataset of incidentally
detected IPNs from a tertiary referral centre. In addition, we compare the performance of our model to
the performance of an established clinical prediction model routinely used in clinical practice [15].
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Methods
Classifier development
The development of our radiomic classifier and Computer-Aided Lung Informatics for Pathology
Evaluation and Rating (CALIPER) and Computer-Aided Nodule Assessment and Risk Yield (CANARY)
used to analyse the lung and nodule texture has been described and validated previously [19–22]. Briefly,
726 patients with screen-detected IPNs with largest diameter ranging from 7 to 30 mm enrolled into the
LDCT arm of the NLST were included in the training set. The first LDCT screening scans to identify the
lung nodule were included in the radiomic analysis. A semi-automated region-growing approach was used
for nodule segmentation (ANALYSE Biomedical Imaging Resource; Mayo Clinic, Rochester, MN, USA).
Manual editing was performed to exclude adjacent intrathoracic structures such as blood vessels and
pleura. Receiver operative curves (ROC) were calculated for each of 57 pre-selected radiological features
organised in the following broad categories characterising the nodule: spatial location, size, shape,
radiodensity, nodule texture, texture of lung tissue surrounding the nodule and nodule surface
characteristics. Statistical significance of the area under the curve (AUC) was calculated and adjusted for
multiple comparisons using Bonferroni correction. Spearman rank correlations between all pairs of
variables were calculated and displayed in a heat map. Multivariate analysis was performed using the least
absolute shrinkage and selection operator (LASSO) to enhance the prediction accuracy. LASSO was run
1000 times and variables that were selected by ⩾50% of the runs were included in the final multivariate
model. To correct for overfitting bootstrapping was applied to calculate the optimism-corrected AUC for
the final model of benign versus malignancy prediction which was found to be 0.939 [19]. We identified
the optimal cut-off at 0.478 with sensitivity 0.904 and specificity 0.855 using Youden’s index.

External validation database
The study was approved or exempted by the institutional review boards of the two participating
institutions (Vanderbilt University (IRB# 151500) and Mayo Clinic (IRB# 15–002674)). The validation
dataset included consecutive patients with incidentally identified IPNs enrolled into the Vanderbilt
University pulmonary nodule registry. The Digital Imaging and Communications in Medicine images of
the CT scans were transferred to the Mayo Clinic (Rochester, MN, USA) for radiomic analysis. All the
investigators at Mayo Clinic were blinded to the clinical information available for each patient, including
baseline patient information (demographics, smoking status, prior cancer history), pathological
information (benign versus malignant, histopathological type, staging) and long-term outcomes (death,
alive with or without evidence of disease). Semi-automated segmentation was performed by the ANALYSE
software described earlier. The BRODERS radiomics classifier was then used to predict the probability of
malignancy of the included nodules.

Comparison of the BRODERS classifier with Brock model
The probability of malignancy calculated for each nodule using the Brock model, a well validated nodule
malignancy probability calculator widely used in clinical practice [20], was compared with the BRODERS
classifier in both the subset of our previously published screen-detected nodule NLST dataset for which
the variables to calculate Brock model were available and the incidentally detected nodule Vanderbilt
dataset (supplementary figure S1). For these cases, Brock model prediction was compared with the
BRODERS classifier using ROC analysis. In addition, comparative ROC analysis was performed on subsets
of nodules classified based on pre-test malignancy probability as follows. Low probability: Brock score
<5%, NLST n=257, Vanderbilt n=42; intermediate probability: Brock score ⩾5% but <65%, NLST n=416,
Vanderbilt n=126; and high probability: Brock score ⩾65%, NLST n=12, Vanderbilt n=2.

Statistical analyses
MedCalc Statistical Software version 19.0.7 (MedCalc Software, Ostend, Belgium; www.medcalc.org; 2019)
was used for statistical analysis. Comparison of ROC curves was done using the nonparametric method
described by DELONG et al. [21] for AUC calculation, exact binomial confidence intervals were used.

Results
The baseline characteristics of the patients in the subset of our NLST cohort and the Vanderbilt cohort are
shown in table 1. The Vanderbilt external validation set included 170 consecutive patients with
incidentally identified IPNs (diameter 7–30 mm) enrolled into the Vanderbilt University pulmonary
nodule registry. Although the distribution of malignant versus benign nodules is similar in both cohorts,
many of the other baseline characteristics including smoking status, nodule size and spiculation is different
between the two groups, as would be expected in comparing a screen-detected nodule cohort with an
incidentally discovered nodule cohort. In the Vanderbilt University cohort, the mean diameter of the
malignant nodules was larger than the benign nodules, 10.3 mm (CI 9.4–11.3 mm) versus 17.5 mm
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(CI 16.2–17.8 mm), respectively (p<0.001) (supplementary figure S2). Supplementary figures S3 and S4
show high-resolution axial scout images formatted into truth tables comparing the ground-truth histology
with radiomic predictions using BRODERS. Confusion tables comparing the clinical/histological ground
truth to the Brock model and the BRODERS classifier for the NLST and Vanderbilt datasets are shown in
tables 2 and 3, respectively. The distribution of malignancies and their BRODERS classifications at various
Brock score categories are displayed in supplementary tables S1 and S2.

Using the optimal cut-off of 0.478 identified via Youden’s index, the sensitivity and specificity of the
BRODERS classifier were 88.7% and 86.2%, respectively, in the NLST screen-detected nodule cohort
(n=685). For nodules with intermediate pre-test probability of malignancy (5–65%) by the Brock model
(n=416) sensitivity was 91.9% and specificity was 71.6% using the same cut-off.

For the entire Vanderbilt incidental nodule dataset (n=170), sensitivity was 92.3%, specificity was 62.0%,
the positive predictive value (PPV) was 73.7% and the negative predictive value (NPV) was 87.5%. For
nodules with intermediate pre-test probability of malignancy by the Brock model (n=97), sensitivity was
94%, specificity was 46%, PPV was 78.4% and NPV was 79.2%. The performance of the BRODERS
classifier across different Brock-probability cut-offs for the intermediate lung nodules are shown in
supplementary tables S3 and S4.

TABLE 1 Baseline characteristics of the two cohorts described in the study

NLST Vanderbilt

Subjects 685 170
Age years 63±5.3 66±7.6
Sex
Male 392 (57.2) 113 (66.5)
Female 293 (42.8) 57 (33.5)

Race
Caucasian 632 (92.3) 152 (89.4)
Black, Asian, other 53 (7.7) 18 (10.6)

Smoking
Current 362 (52.8) 108 (64)
Former 327 (47.2) 58 (34)
Never 0 4 (2)

Smoking pack-years 61±27.1 57±34.2
Mode of nodule detection Screening Incidental
Nodule diagnosis
Benign 313 (45.7) 79 (46)
Malignant 372 (54.3) 91 (54)

Nodule size mm 12.2±6.5 14.6±6.9
Spiculation 199 (29.1) 20 (11.8)

Data are presented as n, mean±SD or n (%). NLST: National Lung Screening Trial.

TABLE 2 Truth tables comparing histology versus Benign versus aggRessive nODule Evaluation
using Radiomic Stratification (BRODERS) classifier versus Brock model probability categories
in the National Lung Screening Trial (NLST) cohort

Brock model probability of
malignancy

Subjects Clinical/
histological
classification

BRODERS
benign

BRODERS
malignant

Low <5% 257 Benign 204 192 12
Malignant 53 17 36

Intermediate 5–<65% 416 Benign 109 78 31
Malignant 307 25 282

High ⩾65% 12 Benign 0 0 0
Malignant 12 0 12

Data are presented as n.
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The direct correlation between the Brock model and the BRODERS classifier for the Vanderbilt University
cohort are shown in supplementary figure S5. Figures 1 and 2 show the ROC comparing Brock model
versus BRODERS for the entire NLST and Vanderbilt cohorts, and subsets of the cohort classified as low
and intermediate pre-test malignancy risk. In both cohorts the AUC are significantly greater for the
BRODERS model compared to the Brock model at all pre-test malignancy probabilities (p<0.001). The
difference is most pronounced in the intermediate pre-test malignancy risk group. The benign resection
rates based on the hypothetical application of the BRODERS classifier to the NLST and the Vanderbilt
datasets are 12% and 26%, respectively, for the entire cohorts and 10% and 22%, respectively, for the
Brock model intermediate probability nodules (5–65%).

Discussion
In this study, we validated the BRODERS classifier on an independent dataset of incidentally identified
lung nodules, and report excellent diagnostic test performance, with the potential to clarify the clinical
significance of IPNs, using a novel radiomic model applicable to existing CT images.

Several notable studies have described the use of radiomics for pulmonary nodule characterisation. Some
of them used large datasets like the NLST [22–24] or the Lung Image Database Consortium image
collection [25], while others used institution-specific datasets as their training sets [26]. While some of
these studies include validation cohorts, the majority of them are either internal validation sets or
represent a subset of the cohort used for training (split sample validation), and thus do not truly provide
external validation [15]. External validation in truly independent datasets is critical for radiomic models,
which typically explore large numbers of candidate predictive variables in regression analyses with limited
datasets. This introduces a substantial risk of overfitting, which is compounded when deep-learning
methods are used. In addition, it is important to take into consideration the potential differences between
screen- and incidentally identified lung nodules, as models derived from screening cohorts may perform

TABLE 3 Truth tables comparing histology versus Benign versus aggRessive nODule Evaluation
using Radiomic Stratification (BRODERS) classifier versus Brock model probability categories
in the Vanderbilt cohort

Brock model probability
of malignancy

Subjects Clinical/histological
classification

BRODERS
benign

BRODERS
malignant

Low <5% 42 Benign 38 30 8
Malignant 4 2 2

Intermediate 5–<65% 126 Benign 41 19 22
Malignant 85 5 80

High ⩾65% 2 Benign 0 0 0
Malignant 2 0 2

Data are presented as n.
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FIGURE 1 Receiver operating characteristic (ROC) for the National Lung Screening Trial cohort comparing the Brock and radiomics classifications.
a) Entire cohort: area under the curve (AUC) Brock 0.833 (95% CI 0.803–0.860), AUC radiomics 0.939 (0.918–0.955); b) low-risk (Brock score <5%)
group: AUC Brock 0.795 (0.74–0.842), AUC radiomics 0.925 (0.886–0.954); c) intermediate-risk (5% Brock score <65%) group: AUC Brock 0.648
(0.599–0.694), AUC radiomics 0.893 (0.859–0.922).
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well in similar cohorts, but may not be generalisable to all lung nodules. In 2019, ARDILA et al. [27]
developed a deep-learning radiomic tool using the NLST dataset as a training cohort, and validated it on
an independent cohort from an academic institution with comparable diagnostic test performance.
However, the validation dataset was also a screening cohort, which may limit the model’s external validity,
and specifically its applicability to incidentally discovered IPNs. More recently, MASSION et al. [28] reported
the development of their deep-learning based Lung Cancer Prediction Convolutional Neural Network
(LCP-CNN) model. The reported AUCs of 0.92, 0.84 and 0.92 in the NLST (training set, screen-detected),
a Vanderbilt University validation set and an Oxford University validation set (incidentally identified
nodules), respectively, are comparable to the performance of our conventional radiomic classifier and
outperformed the clinical Mayo Lung Nodule prediction model. Ultimately, the clinical utility of the
LCP-CNN will need to be clarified with prospective validation.

While deep-learning radiomic models and machine learning have received disproportionate attention in
recent years, they have significant limitations. These include the need for very large training sets [29],
redundancy of features that are thought to be significant [30], overfitting [31] and the inability for external
research groups to replicate results [32]. Deep-learning models are often compared to a “black box”, in
that predictive variables are unknown, limiting reproducibility and transparency, may have no direct
correlation with underlying relevant biological features, or may be heavily weighted by features easily
identified during clinical CT evaluation, such as nodule size. Conversely, in our conventional radiomic
model, variables with known relevance to nodule characterisation were selected for their direct relevance to
predictive biological features, such as nodule texture, surface characteristics and location.

It is important to recognise that due to a variety of factors, including strict inclusion criteria and healthy
volunteer effect, subjects enrolled in screening studies tend to be substantially different to patients
presenting at lung nodule clinics or even patients eligible for lung cancer screening [8]. In this study we
validated our model, the BRODERS classifier, which was trained using the NLST screening dataset [19],
on an external dataset of consecutively identified incidentally detected lung nodules collected at the
Vanderbilt lung nodule clinic. The excellent performance of our model supports its generalisability to
other populations of patients with IPNs.

A variety of clinical prediction models have been proposed to assist clinicians in lung nodule management
using readily available data [18]. These models are relatively easy to use and while some may be better
suited for selected populations, comparative studies suggest that the Brock model may perform better than
the others [33, 34]. In addition, a study by VAN RIEL et al. [35] suggested that the Brock model may be
preferable to both Lung-RADS and the National Comprehensive Cancer Network guidelines to classify
nodules. The BRODERS classifier outperformed the Brock model in both the NLST and Vanderbilt
cohorts at all pre-test malignancy risk levels. Notably, our model had high NPV at low pre-test malignancy
risk and good PPV and NPV at intermediate pre-test malignancy risk. Hence, applying the BRODERS
radiomic model to screen- or incidentally identified lung nodules may effectively reclassify nodules with
intermediate probability of malignancy into high or low post-test probability, obviating the need for
advanced imaging, invasive biopsy or benign surgical resections. For example, using the calculated
sensitivity and specificity for the nodules with intermediate pre-test probability of malignancy in the
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FIGURE 2 Receiver operating characteristic (ROC) for the Vanderbilt cohort comparing the Brock and radiomics classifications. a) Entire cohort:
area under the curve (AUC) Brock 0.872 (95% CI 0.812–0.918), AUC radiomics 0.904 (0.849–0.943); b) low-risk (Brock score <5%) group: AUC
Brock 0.658 (0.496–0.797), AUC radiomics: 0.796 (0.644–0.904); c) intermediate-risk (5% Brock score <65%) group: AUC Brock 0.798 (0.717–0.864),
AUC radiomics 0.856 (0.782–0.912).

https://doi.org/10.1183/13993003.02485-2020 6

LUNG IMAGING | F. MALDONADO ET AL.



Vanderbilt cohort, a nodule with a 50% pre-test probability could be reclassified as low post-test
probability after negative radiomic analysis (7.7%), or high post-test probability (74.7%), which may alter
the clinical management.

The clinical implementation of the BRODERS classifier should be highly feasible. Our semi-automated
region-growing approach nodule segmentation approach (ANALYSE) is fast (1–5 min for most nodules),
and does not require the operator to be a trained radiologist. We have successfully evaluated the
reproducibility of our segmentation approach across different institutions and various operators [36]. At
Mayo Clinic and Vanderbilt University, we currently effectively utilise radiology technician in the 3D
laboratory to clinically segment pulmonary nodules for other radiomics applications. After segmentation,
the BRODERS classifier can be calculated within a few seconds.

Our study has several limitations. First, it is a retrospective study with the limitations inherent in this type
of study design. Second, the CT scans for the Vanderbilt cohort were largely obtained at a single
institution using similar scanners and acquisition protocols, and all nodules were incidentally rather than
screen-detected. In addition, our validation cohort included 79 benign and 91 malignant nodules, which
may not reflect typical nodule cohorts as encountered in all clinical practice settings and is certainly not
reflective of the disease prevalence encountered in a screening cohort [37]. Populations with different
proportions of malignant nodules may affect our model’s positive and negative predictive values. Finally,
the validation cohort is relatively small. However, the paucity of radiomic studies using external,
well-curated validation cohorts, strengthens the significance of our work. Lastly, the diagnostic
performance of the Brock model, which was originally derived from a cohort of screen-detected nodules,
may have been altered by applying it to the incidentally discovered nodules in the Vanderbilt dataset.

To mitigate these potential issues, we are planning to prospectively validate the performance of the BRODERS
classifier in a representative mixed multicentre dataset of incidentally and screen-detected lung nodules.

In conclusion, herein we present the validation of the BRODERS classifier. Additional validation in other
external datasets and further prospective validation may prove the value of the BRODERS classification as
guidance to clinicians. In the near future, BRODERS might be used in practice to leverage the wealth of
features readily available in CT datasets and facilitate individualised management decisions for screen- or
incidentally identified lung nodules.
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