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ABSTRACT Cystic fibrosis (CF) is a life-threatening disorder characterised by decreased pulmonary
mucociliary and pathogen clearance, and an exaggerated inflammatory response leading to progressive
lung damage. CF is caused by bi-allelic pathogenic variants of the cystic fibrosis transmembrane
conductance regulator (CFTR) gene, which encodes a chloride channel. CFTR is expressed in endothelial
cells (ECs) and EC dysfunction has been reported in CF patients, but a role for this ion channel in
ECs regarding CF disease progression is poorly described.

We used an unbiased RNA sequencing approach in complementary models of CFTR silencing and
blockade (by the CFTR inhibitor CFTRinh-172) in human ECs to characterise the changes upon CFTR
impairment. Key findings were further validated in vitro and in vivo in CFTR-knockout mice and ex vivo
in CF patient-derived ECs.

Both models of CFTR impairment revealed that EC proliferation, migration and autophagy were
downregulated. Remarkably though, defective CFTR function led to EC activation and a persisting pro-
inflammatory state of the endothelium with increased leukocyte adhesion. Further validation in CFTR-
knockout mice revealed enhanced leukocyte extravasation in lung and liver parenchyma associated with
increased levels of EC activation markers. In addition, CF patient-derived ECs displayed increased EC
activation markers and leukocyte adhesion, which was partially rescued by the CFTR modulators VX-770
and VX-809.

Our integrated analysis thus suggests that ECs are no innocent bystanders in CF pathology, but rather
may contribute to the exaggerated inflammatory phenotype, raising the question of whether normalisation
of vascular inflammation might be a novel therapeutic strategy to ameliorate the disease severity of CF.
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Introduction
Cystic fibrosis (CF) is an autosomal recessive disorder caused by impaired function of the cystic fibrosis
transmembrane conductance regulator (CFTR) protein, which primarily acts as a chloride channel, mainly
in epithelial cells [1]. CF is a multi-systemic disorder characterised by progressive lung disease and
pancreatic insufficiency, while also featuring conditions of gastrointestinal involvement, liver disease and
diabetes [2]. Lung disease determines much of the morbidity and mortality in CF patients [3]. While the
CF lung phenotype is considered to be primarily caused by infections [3], the subsequent inflammation is
simultaneously exaggerated and ineffective at eradicating pathogens, initiating a vicious cycle of infection
and inflammation [4]. Persistent high-intensity inflammation inflicts permanent structural damage on the
airways and impairs lung function, which ultimately results in respiratory failure and death [3, 4].

Endothelial cells (ECs) line the inner wall of blood vessels [5]. These cells regulate blood clotting,
inflammation, angiogenesis and vascular tone [6]. Although CFTR is expressed and functional in normal
ECs [7, 8], the vascular role of CFTR is less well studied in comparison to its well-established role in
epithelial cells. Yet, micro- and macrovascular dysfunction have been documented in CF patients [9, 10].
Endothelial dysfunction is involved in CF-associated manifestations including diabetes and cardiovascular-,
lung- and liver-associated complications [11, 12]. Nevertheless, the underlying mechanism of EC
dysfunction and its role in disease progression remain elusive [11, 12]. Endothelial dysfunction is a
predictor of cardiovascular risk, and genome-wide association studies detected a link between
single-nucleotide polymorphisms in CFTR and coronary artery disease and flow-mediated arterial dilation
[13, 14]. Elucidating the role of CFTR in ECs is therefore relevant for understanding the pathophysiology
of CF and cardiovascular diseases [13, 14]. We thus employed an unbiased transcriptomics approach
complemented by functional characterisation of EC properties upon CFTR impairment, and studied the
possible relevance of our findings for CF patients.

Materials and methods
Details regarding materials and methods are provided in the supplementary material.

Cell culture
Freshly isolated human umbilical vein endothelial cells (HUVECs) were obtained from different donors
and used as single-donor cultures between passage 1 and 4 as previously described [15, 16]. Blood
outgrowth endothelial cells (BOECs) were freshly isolated from peripheral blood obtained from different
healthy donors and CF patients from the outpatient clinic in their usual state of health without
intercurrent infections (clinical information is shown in supplementary table S1) following previously
described protocols with minor modifications [17, 18].

In vivo mouse assays
Leukocyte infiltration into lung and liver was analysed as previously described with minor adaptations [19].
Briefly, Cftrtm1Unc-Tg(FABPCFTR)1Jaw/J (CFTR knockout (CFTRKO)) mice [20, 21] were perfused with
PBS and organs were collected for immunostaining (CD45 and CD105) or digested for flow cytometry
analysis (CD45, CD31, intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1
(VCAM1)).

Bulk RNA sequencing and analysis
RNA extracted with TRIzol was subjected to sequencing library preparation with the Lexogen QuantSeq 3′
mRNA-Seq library preparation kit (Lexogen, Vienna, Austria). Samples were indexed to allow for
multiplexing. Library quality and size range was assessed using a Bioanalyzer (Agilent Technologies,
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Leuven, Belgium) with the DNA 1000 kit (Agilent Technologies). Libraries (2 nM) were sequenced on an
Illumina HiSeq 4000 platform (Illumina, Eindhoven, the Netherlands). Single-end reads of 50 bp length
were produced with a minimum of 1 M reads per sample. Quality control of raw reads was performed
with FastQC v0.11.7 [22].

Immunoblotting
Protein extraction and immunoblot analysis were performed using a modified Laemmli sample buffer
(125 mM Tris-HCl, pH 6.8 buffer containing 2% SDS and 10% glycerol) in the presence of protease and
phosphatase inhibitors (Roche, Anderlecht, Belgium). Mitochondrial isolation was performed using the
mitochondria isolation kit for cultured cells according to the manufacturer’s instructions (Thermo Fisher
Scientific, Geel, Belgium). Lysates were separated by SDS-PAGE under reducing conditions, transferred to
a nitrocellulose membrane, and analysed by immunoblotting.

In vitro functional assays
Endothelial proliferation, lactate dehydrogenase (LDH) viability assay, scratch wound, trans-endothelial
electrical resistance (TEER) and leukocyte adhesion assays were performed as described previously [19, 23–25].

Intracellular and mitochondrial reactive oxygen species analysis
Intracellular and mitochondrial reactive oxygen species (ROS) levels were measured using CM-H2DCFDA
(Thermo Fisher Scientific) and MitoSOX (Thermo Fisher Scientific) according to the manufacturer’s
instructions, and quantified as previously described [26].

Oxygen consumption rate
Bioenergetics of ECs were determined on a Seahorse XF24 instrument (Agilent, Diegem, Belgium) as
previously described [27].

Detection of glutathione species and NADPH
Targeted metabolites were measured as previously described [27].

Quantification and statistical analysis
Data represent mean±SEM of at least three independent experiments. Statistical significance was calculated
by standard two-tailed t-test (with Welch’s correction when variances were significantly different between
groups), ANOVA (for multiple comparisons within one dataset) and one-sample t-test (for comparisons
to point normalised data) using Prism v8.2 (GraphPad Software, La Jolla, CA, USA). Bioinformatic
analysis was carried out using in-house-developed BIOMEX software [28]. A p-value <0.05 was considered
statistically significant.

Results
CFTR impairment leads to transcriptomic alterations in ECs
We first confirmed earlier findings [7, 8] of detectable CFTR expression in cultured primary HUVECs
(hereafter referred to as ECs) at the protein level via immunoblotting and immunocytochemistry (figure
1a, b). In many cases, CFTR mutations result in lower levels of functional CFTR protein in the plasma
membrane [29]. To study CFTR’s function, we therefore used two complementary models to mimic this
situation: 1) we blocked CFTR activity using the allosteric CFTR inhibitor CFTRinh-172, which is
commonly used in CF research [30]; and 2) we silenced CFTR expression using lentiviral-mediated
expression of two non-overlapping CFTR-specific short hairpin RNAs (shRNAs) to obtain a CFTR
knockdown (CFTRKD). We refer to CFTR-blocked or CFTR-silenced ECs as “CFTR-impaired” ECs.

CFTRKD lowered CFTR protein levels by >55% (figure 1a–c, supplementary figure S1a) without altering
protein expression of the typical endothelial markers von Willebrand factor and vascular endothelial
cadherin (VE-cadherin) (supplementary figure S1b). While CFTR blockade or silencing only minimally
affected EC survival (supplementary figure S1c, d), increasing CFTRKD efficiency (>95% at the protein
level) increased cell death (>50%, supplementary figure S1d, e). We therefore performed further
experiments at an intermediate silencing depth.

We carried out an unbiased transcriptomics analysis to screen for global changes induced upon CFTR
impairment. Principal component analysis of all genes and hierarchical clustering analysis of the highly
variable genes revealed that control and CFTR-impaired ECs grouped into distinct clusters, suggesting
broad transcriptomic changes (figure 1d, e, supplementary figure S2a, b). Gene set enrichment analysis
(GSEA) comparing control and CFTR-impaired ECs was used to associate groups of significantly
differentially expressed genes with biological processes (supplementary table S2) [31]. Upon CFTR
impairment, GSEA revealed increased expression of pro-inflammatory, ion transmembrane transport and

https://doi.org/10.1183/13993003.00261-2020 3

CYSTIC FIBROSIS AND BASIC SCIENCE | M. DECLERCQ ET AL.

http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00261-2020.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00261-2020.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00261-2020.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00261-2020.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00261-2020.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00261-2020.figures-only#fig-data-supplementary-materials


1.5

a)

c)

f) g)

d) e)

b)

1.0

0.5

P
C

2
 (

1
2

.8
%

)

PC1 (40.5%)

3

2

1

0

–1

–2

U
p

re
g

u
la

te
d

u
p

o
n

 C
F

T
R

K
D

D
o

w
n

re
g

u
la

te
d

u
p

o
n

 C
F

T
R

K
D

–3

–4

Top ranking

Low ranking

EC activation

STAT3 signalling

EC activation (1)
EC activation (2)
H+ transporters

Hypoxia (1)
Upregulated TNF signalling

STAT3 signalling
Hypoxia (2)

Hypoxia (3)
Hypoxia (4)

Hypoxia (5)
JNK signalling

Upregulated IL-2 signalling

IL-6 signalling
Proteasome

HIFα targets (1)

HIFα targets (2)

Hypoxia (6)

Hypoxia (7)
Cell cycle M/G1 phase
Cell adhesion (1)

Cell adhesion (2)
Cell adhesion (3)
EC migration (1)

EC migration (2)

–3 –2 –1 0 1 2 3

Normalised enrichment score

Cell cycle S phase

IL-7 signalling

Downregulated IL-2 signalling

Downregulated TNF signalling

MYC targets
PROX1 targets

Glycolysis
VEGFA targets (3)

VEGFA targets (2)

VEGFA targets (1)

Senescence

Cell cycle S phase

EC migration

Cell cycle G1/S phase

H+ transmembrane transport

N
o

rm
a

li
s
e

d
 e

n
ri

c
h

m
e

n
t 

s
co

re

C
F

T
R

/G
A

P
D

H
1.5

1.0

0.5

0

*

C
F

T
R

+
 d

o
ts

·a
re

a
–

1
 

A
U

·p
ix

e
l–

1

GAPDH

CFTR
*C
*B

0

A
c
ti

n
 -

 C
F

T
R

 -
 H

o
e

c
h

s
t

***

C
o

n
tr

o
l

C
F

T
R

K
D

C
o

n
tr

o
l

C
F

T
R

K
D

C
o

n
tr

o
l

C
F

T
R

K
D

Control CFTRKD

CFTRKD

versus control

CFTRinh

versus control

C
F

T
R

K
D

C
o

n
tr

o
l

Control CFTRKD

Control

High

Low

CFTRKD

FIGURE 1 Transcriptomic signature of cystic fibrosis transmembrane conductance regulator (CFTR)-silenced endothelial cells (ECs).
a) Representative immunoblot for CFTR expression in ECs transduced with scrambled short hairpin RNA (shRNA) (control) or CFTR shRNA (CFTRKD).
Bands B and C indicate immature (native) and mature (glycosylated) CFTR respectively. GAPDH was used as loading control. Densitometric
quantification of the ratio of CFTR to GAPDH is shown on the right. Data are presented as mean+SEM; n=10. ***: p<0.001 by one-sample t-test.
b) Representative confocal images of control and CFTRKD ECs stained for CFTR (red), actin (green) and nuclei (Hoechst; blue). Scale bar: 100 µm.
c) Fluorescence quantification of control and CFTRKD ECs. Data are presented as mean+SEM; n=3. *: p<0.05 by one-sample t-test. AU: arbitrary units.
d) Principal component (PC) analysis on all genes of control and CFTRKD ECs obtained after bulk RNA sequencing. e) Correlation heatmap of the
highly variable genes in control and CFTRKD ECs. Colour scale: red, high correlation; blue, low correlation. f) Bar plots representing the top
deregulated gene sets (with a significant adjusted p-value) ranked based on their normalised enrichment score. For official gene set names see
supplementary table S2. Numbers between parentheses indicate alternative gene sets pertaining to the same biological function or signalling
pathway. g) Violin plots representing top-ranking (dots) and low-ranking (diamonds) gene sets obtained after meta-analysis of control versus
CFTR-impaired ECs (CFTRKD and CFTRinh-172- treated (CFTRinh)). Symbols indicate where gene sets are located in the distribution.
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hypoxia-related pathways, while gene sets involved in proliferation (cell cycle), cell migration and cell
adhesion were downregulated (figure 1f, supplementary figure S2c, supplementary table S2).

We then set out to obtain congruent markers that are conserved across CFTR blockade and silencing. We
hypothesised that congruent pathways are related to the chloride channel function of CFTR, whose
malfunction is shared between all CF patients. Congruent upregulated gene sets suggested a role in EC
activation (pathways related to tumour necrosis factor-α (TNF-α), signal transducer and activator of
transcription 3 (STAT3), hypoxia-inducible factor 1-α (HIF1-α), interleukin (IL)-2 and IL-6), antigen
binding and processing (human leukocyte antigen (HLA) class I, transporters associated with antigen
processing and cathepsins), matrisome remodelling and ion transmembrane transport, while congruent
downregulated gene sets implied a possible role in the cell cycle, migration and adhesion (supplementary
figure S2d, supplementary table S3). We confirmed these findings by performing a meta-analysis of
control versus CFTR-impaired ECs to rank differentially regulated genes and gene sets (figure 1g,
supplementary table S3). Among the top 20 ranking genes were CD9, CYR61, CXCL1 and CCL2, which
have been linked to leukocyte recruitment to the endothelial membrane and trans-endothelial leukocyte
migration (supplementary table S3) [32–35]. The top three upregulated gene sets were involved in EC
activation, STAT3 signalling and H+ transmembrane transport, while gene sets involved in the cell cycle
and cell migration were the top three downregulated gene sets (figure 1g, supplementary table S3). Taken
together, CFTR impairment induced a prominent pro-inflammatory and EC activation gene signature,
accompanied by a downregulated gene signature of EC migration and proliferation.

Several key EC functions malfunction upon CFTR impairment
To investigate in more detail the compromised EC proliferation transcriptome signature upon CFTR
silencing, we compared the expression of genes involved in various phases of the cell cycle. Genes coding
for proliferation markers, transcriptional regulators, cyclins and cyclin-dependent kinases were
downregulated upon CFTR impairment (figure 2a). These transcriptomic findings were confirmed by a
decrease in EC proliferation as measured by tritium-labelled thymidine incorporation into DNA upon
CFTR impairment (figure 2b, c).

The transcriptomics analysis further revealed that CFTR silencing downregulated the expression of
genes involved in integrin and vascular endothelial growth factor (VEGF) signalling, and actin
remodelling, suggesting a novel role of CFTR in EC migration (figure 2d). In agreement, the scratch
wound assay confirmed reduced migration of CFTR-impaired ECs (figure 2e, f ). Overexpression of an
exogenous haemaglutinine (HA)-tagged CFTR in ECs (to facilitate visualisation) followed by
immunostaining for the HA-tag revealed that CFTR was primarily expressed and enriched in membrane
ruffling structures (e.g. lamellipodia) of migrating ECs (supplementary figure S3a), further supporting a
role in EC migration. Confluent monolayers of CFTRKD ECs displayed compromised junctional
integrity as measured by a higher proportion of discontinuous and reticulated VE-cadherin and CD31
junctions (figure 2g, h, supplementary figure S3b, c) [18, 36, 37]. Functionally, this corresponded to a
decrease in the trans-endothelial electrical resistance (TEER) of CFTR-impaired ECs (figure 2i, j),
which is in line with previously published findings on ECs in CF [38, 39]. Our data thus indicate an
underappreciated role for CFTR in EC proliferation and migration, and in maintaining endothelial
barrier integrity.

CFTR impairment induces oxidative stress and mitochondrial dysfunction
Increased oxidative stress is a well-known and noxious hallmark of CF pathophysiology [40]. CFTR
silencing led to the induction of several gene classes related to an anti-oxidative stress response, including
transcription factors capable of binding antioxidant response elements (ARE), glutathione-consuming
enzymes, superoxide dismutase, peroxiredoxin, thioredoxin, and DNA repair and chaperone proteins
(figure 3a). We confirmed these transcriptomic changes by flow cytometry analysis of total cellular
oxidative stress, which indeed revealed increased oxidative stress upon CFTR impairment (figure 3b, c).
When key cellular antioxidant scavengers were measured by liquid chromatography-mass spectrometry,
both glutathione (GSH) and its reducing co-factor NADPH were affected, as indicated by the increased
ratios of oxidised/total GSH and NADP+/NADPH (figure 3d–g). The mRNA transcript levels of
glutamate-cysteine ligase, the rate-controlling enzyme in GSH biosynthesis, were unchanged in
CFTR-silenced ECs (supplementary figure S4a), suggesting that increased GSH consumption rather than
reduced GSH synthesis contributed to the elevated oxidative stress.

Measurements of mitochondrial ROS using the MitoSOX dye by flow cytometry revealed that CFTR
impairment led to significantly elevated mitochondrial O2− levels (figure 3h, i). This was associated with
decreased mitochondrial respiration as reflected by a reduced basal oxygen consumption rate, ATP
production and maximal oxygen consumption rate (figure 3j–m), suggesting mitochondriopathy.
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FIGURE 2 Endothelial proliferation and migration are reduced upon cystic fibrosis transmembrane conductance regulator (CFTR) impairment.
a) Heatmap showing the expression levels of differentially expressed genes between endothelial cells (ECs) transduced with scrambled short
hairpin RNA (shRNA) (control) or CFTR shRNA (CFTRKD). Selected genes are involved in cell proliferation and have adjusted p-values<0.05. Colour
scale: red, high feature expression; blue, low feature expression. b, c) [3H]-thymidine incorporation into DNA (proliferation assay) in control versus
CFTRKD ECs (n=10) (b) or DMSO-treated control ECs versus CFTRinh-172-treated ECs (CFTR(inh)) (n=6) (c). Data are presented as mean+SEM.
***: p<0.001 by two-tailed paired t-test. d) Heatmap showing differentially expressed genes important in cell migration between control and
CFTRKD ECs. Selected genes have adjusted p-values<0.05. e, f ) Scratch wound migration assay with control and CFTR-impaired ECs (CFTRKD, n=8
(e) or CFTRinh, n=7 (f )). Data are presented as mean+SEM. *: p<0.05; **: p<0.01 by two-tailed paired t-test. g, h) Quantification of the fraction of
discontinuous and continuous VE-cadherin-stained junctions (n=4) (g) and the fraction of reticulated VE-cadherin junctions in control and CFTRKD

ECs (n=5) (h). Data are presented as mean+SEM. *: p<0.05; **: p<0.01 by two-tailed unpaired t-test. i, j) Trans-endothelial electrical resistance
(TEER) assay with control and CFTR-impaired ECs (CFTRKD, n=3 (i) or CFTRinh, n=3 ( j)). Data are presented as mean±SEM. **: p<0.01; ***: p<0.001
by two-way ANOVA.
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FIGURE 3 Cystic fibrosis transmembrane conductance regulator (CFTR) defect in endothelial cells (ECs) induces oxidative stress and
mitochondrial dysfunction. a) Heatmap showing the expression levels of differentially expressed genes between ECs transduced with scrambled
short hairpin RNA (shRNA) (control) or CFTR shRNA (CFTRKD). Selected genes are involved in cell response to oxidative stress and have adjusted
p-values<0.05. Colour scale: red, high feature expression; blue, low feature expression. ARE: transcription factors binding antioxidant response
elements. b–g) Intracellular reactive oxygen species (ROS) levels (CM-H2DCFDA) measured by flow cytometry and expressed in arbitrary units
(AU) in control versus CFTRKD ECs (b) or DMSO-treated control ECs versus CFTRinh-172-treated ECs (CFTRinh) (c). (GSSG)/(GSH+GSSG) ratio in
control versus CFTRKD ECs (d) or DMSO-treated control ECs versus CFTRinh ECs (e). NADP+/NADPH ratios measured by liquid chromatography-mass
spectrometry and normalised to protein content in control versus CFTRKD ECs (f) or DMSO-treated control ECs versus CFTRinh ECs (g). Data are
presented as mean+SEM; CFTRKD n=4; CFTRinh n=4. *: p<0.05; **: p<0.01 by one-sample t-test. h, i) Mitochondrial ROS levels, measured by flow
cytometry after incubation with the MitoSOX dye. Data are presented as mean+SEM; CFTRKD n=3; CFTRinh n=6. **: p<0.01 by two-tailed paired t-test.
j–m) Basal, ATP-producing and maximal oxygen consumption rates (OCRs) were measured by Seahorse after oligomycin (Oligo.), carbonyl
cyanide-p-trifluoromethoxy phenylhydrazone (FCCP) and antimycin A (AA) treatments. Data are presented as mean+SEM; CFTRKD n=4; CFTRinh n=4.
*: p<0.05; **: p<0.01 by one-sample t-test. n) Representative immunoblots for dynamin related protein 1 (DRP1) (mitochondrial fission),
OPA1 mitochondrial dynamin like GTPase (OPA1) (mitochondrial fusion) and Parkin (mitophagy) in control or CFTRKD ECs and subjected to
mitochondrial (mito.) and cytoplasmic (cyto.) fractionation. VDAC1 was used as loading control for mitochondrial fraction, while GAPDH was used
for the cytoplasmic fraction. o–q) Densitometric quantifications. Data are presented as mean+SEM; n=5. *: p<0.05 by one-sample t-test.
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The clearance of damaged mitochondria through autophagy, a process called mitophagy, is vital for
cellular functioning and survival [41]. Immunoblotting revealed increased mitochondrial levels of dynamin
related protein 1 (DRP1) and Parkin (mediating mitochondrial fission), but reduced levels of
OPA1 mitochondrial dynamin like GTPase (OPA1) (mediating mitochondrial fusion), indicative of
increased mitochondrial fission but reduced fusion (figure 3n–q). Taken together, these data show
that CFTR deficiency induces an oxidative stress response, with more damaged mitochondria with
defective mitochondrial function.

Autophagy deficiency in CFTR-impaired ECs
Differential gene expression analysis of our transcriptomic data revealed that autophagy markers p62
(SQSTM1) and microtubule-associated protein 1 light chain 3B (LC3B) (MAP1LC3B) were elevated upon
CFTR silencing (figure 4a). Real-time qPCR analysis of these marker genes confirmed these findings
(figure 4b). Corroboratively, the protein levels of the autophagic substrate p62 and autophagosome
markers LC3BI and LC3BII were also increased (figure 4c–j), suggesting an accumulation of
autophagosomes and a defect in autophagy flux rather than increased functional autophagy. To validate
our findings, we performed transmission electron microscopy (TEM), which highlighted a two-fold
increase in autophagosome abundance upon CFTR impairment, confirming defective autophagy (figure
4k–n, supplementary figure S4b). CFTRKD ECs displayed upregulated mTORC1 activity (a known
inhibitor of autophagosome formation and lysosome biogenesis [42]) as measured by the increased
phosphorylation of its downstream canonical target P70S6K and its substrate S6 (figure 4o–r). Our results
suggest that CFTR impairment may hinder endothelial autophagy through mTORC1 activation and
autophagosome accumulation.

CFTR impairment induces EC activation
Differential expression analysis in control versus CFTRKD ECs revealed a pro-inflammatory phenotype
with CXCL1, CCL2 and ICAM1 ranking as the top three upregulated genes in CFTRKD cells
(supplementary table S4). CFTR-silenced ECs upregulated transcripts of various pro-inflammatory genes,
adhesion molecules and TNF-related signalling (figure 5a). In baseline conditions and upon
pro-inflammatory stimulus (lipopolysaccharide (LPS) challenge), CFTRKD ECs had a more pronounced
pro-inflammatory phenotype than control cells, with elevated expression of VCAM1, ICAM1, SELE
(E-selectin) and IL8. While LPS stimulation effectively increased the expression of activation markers in
control ECs, it had no further effect on their already increased expression in CFTRKD ECs (figure 5b–e).
Emerging evidence highlights that a loss in autophagy could contribute to EC activation [43]. However,
rescuing the pro-inflammatory phenotype with rapamycin (an mTORC1 inhibitor inducing autophagy)
did not alter the expression levels in either baseline or LPS challenge conditions (supplementary figure
S4c). We hypothesised that increased expression of adhesion molecules and chemokines by ECs could
result in more attraction and binding of leukocytes onto the EC surface. Therefore, we performed an in
vitro leukocyte adhesion assay and confirmed that, compared to control ECs, more leukocytes adhered to
the surface of CFTR-impaired ECs at both baseline and after LPS stimulation (figure 5f–i).

We then investigated the role of CFTR in a bi-transgenic mouse model of CFTR harbouring a targeted
knockout (CFTRKO) mutation of CFTR and expressing the human CFTR transgene under the expression
of the FABP1 promoter (rescuing the lethal intestinal occlusion phenotype occurring at birth [21]).
Immunostaining of CD45, a marker of leukocytes, showed increased leukocyte infiltration into the lung
and liver parenchyma of adult CFTRKO mice compared to wild-type littermates (figure 6a–d). Flow
cytometry measurements of single-cell lung suspensions confirmed a heightened CD45+ cell fraction and
increased expression of VCAM1 and ICAM1 in viable CD31+ CD45− cells isolated from CFTRKO mice
(figure 6e–g, supplementary figure S4d). Our data thus suggest that across different model organisms,
CFTR impairment leads to a pro-inflammatory phenotype in ECs, which can attract leukocytes and
reinforce their extravasation across the endothelium.

CFTR mutations cause a pro-inflammatory phenotype in CF patient-derived ECs
In the clinical context that patients with CF can experience sustained periods of inflammation with an
exaggerated immune response [44], we validated our findings in an ex vivo model using blood outgrowth
endothelial cells (BOECs), cells derived from circulating EC progenitors that express typical EC markers
[45]. BOECs were cultured from peripheral blood taken from CF patients with severe mutations (Class I–III;
patients’ clinical information is shown in supplementary table S1), and retained endothelial features when
cultured in vitro (figure 7a, supplementary figure S4e). Confirming our previous results in HUVECs, wound
closure and barrier integrity were also impaired in CF patient-derived BOECs (figure 7b, c). Similar to
CFTRKD ECs, CF patient-derived BOECs displayed increased discontinuous and reticulated VE-cadherin
junctions compared to BOECs from healthy donors (figure 7d–f). It has been suggested that such reticulated
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FIGURE 4 Autophagy defect in cystic fibrosis transmembrane conductance regulator (CFTR)-impaired endothelial cells (ECs). a) Boxplots showing
normalised expression levels of SQSTM1 and MAP1LC3B (encoding p62 and microtubule-associated protein 1 light chain 3B (LC3B), respectively)
in ECs transduced with scrambled short hairpin RNA (shRNA) (control) and CFTR shRNA (CFTRKD). n=6. ***: adjusted p<0.001 by moderated
t-test. b) Quantitative reverse-transcriptase PCR analysis of SQSTM1 and MAP1LC3B expression levels in control and CFTRKD ECs, and
DMSO-treated control versus CFTRinh-172-treated (CFTRinh) ECs. Data are presented as individual data points with median; CFTRKD n=4; CFTRinh
n=4. *: p<0.05; **: p<0.01 by two-tailed paired t-test. c–j) Representative immunoblots (c, d) and corresponding densitometric quantifications for
p62 (e, f ), LC3BI (g, h) and LC3BII (i, j) in control, CFTRKD or CFTRinh ECs. GAPDH was used as loading control. Data are presented as mean+SEM;
CFTRKD n=4; CFTRinh n=8. *: p<0.05; **: p<0.01; ***: p<0.001 by one-sample t-test. k, m) Representative transmission electron microscopy of
cultured control (k) versus CFTRKD (m) ECs indicates an accumulation of autophagosomes (white arrowheads). Scale bars: 500 nm.
l, n) Quantification of autophagosome area for ECs upon CFTRKD (l) or CFTRinh (n). Data are presented as mean+SEM; CFTRKD n=3; CFTRinh n=4.
*p<0.05; **p<0.01 by two-tailed paired t-test. o–r) Representative immunoblots and corresponding densitometric quantifications for p-P70S6K,
P70S6K, p-S6 and S6 in control and CFTRKD ECs. GAPDH was used as loading control. Data are presented as mean+SEM. n=7. *: p<0.05;
**: p<0.01; ***: p<0.001 by one-sample t-test.
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junctions are important in controlling leukocyte transmigration [37, 46, 47], corroborating the role of CFTR
in barrier integrity and inflammation. Furthermore, mRNA levels of the pro-inflammatory ICAM1, SELE
and IL-8 were increased in BOECs from CF patients compared to healthy donors, which was mirrored in
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FIGURE 5 Cystic fibrosis transmembrane conductance regulator (CFTR) impairment induces endothelial cell (EC) activation. a) Heatmap showing
the expression levels of differentially expressed genes between ECs transduced with scrambled short hairpin RNA (shRNA) (control) or CFTR
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the increased adherence of leukocytes to CF patient-derived ECs (figure 7g, h). These results correlate with
our earlier findings, in which CFTR loss of function in our models resulted in a pro-inflammatory
phenotype in ECs. More importantly, we found that rescuing CFTR function with the combination of
CFTR modulators VX-770 and VX-809 (Orkambi®) was also able to partially rescue the pro-inflammatory
gene expression signature, and significantly diminished leukocyte adhesion onto CF patient-derived ECs
(figure 7h, i).
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FIGURE 7 In cystic fibrosis (CF) patients, cystic fibrosis transmembrane conductance regulator (CFTR) loss
promotes endothelial cell (EC) dysfunction and activation. a) Representative confocal images of blood outgrowth
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cadherin (VE-cadherin), CD31 and von Willebrand factor (vWF). Scale bar: 50 µm. b) Scratch wound migration
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with mean+SEM; n=4. *: p<0.05; ***: p<0.001 by two-tailed paired t-test.
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Discussion
Inflammation plays a major role in CF pathophysiology, in which it affects mainly the lungs but also
organs such as the liver, intestines and pancreas [2]. The origin of the inflammation in CF-affected organs
is currently debated because it is unclear whether it is of primary or secondary origin [4, 48]. A
pro-inflammatory phenotype has been observed in different cell types independent of pro-inflammatory
challenges [49–51], e.g. in HUVECs treated with CFTR inhibitor, which produced more IL-8 [39, 52]. Our
bulk transcriptomic data revealed upregulated expression of multiple pro-inflammatory genes in
CFTR-impaired ECs. Upon CFTR impairment in vitro and in CF patient-derived ECs ex vivo, the
expression of several EC pro-inflammatory genes (ICAM1, IL-8 and SELE), which are essential molecules
for leukocyte adhesion and diapedesis, was upregulated. This was mirrored by increased leukocyte
adhesion to CFTR-impaired ECs. These findings confirm that CFTR dysfunction by itself leads to a
pro-inflammatory phenotype even in the absence of a concomitant infection. CFTR-modulator treatment
has already been successfully used to rescue CFTR function in other in vitro systems, even showing clinical
correlation to patient response [53, 54]. Accordingly, the combination treatment of VX-770 and VX-809
(Orkambi®) was able to partially rescue the pro-inflammatory phenotype of CF patient-derived ECs, as
measured by inflammatory marker gene expression and leukocyte adhesion. Our results are in accordance
with earlier findings in CF patients in which increased soluble EC activation molecules were detected in
the plasma and serum, correlating, in some cases, with impaired lung function [55–60]. Additionally, in
the gut-corrected CFTRKO mouse model, microscopic quantifications revealed more leukocyte infiltration
in lung and liver, with increased expression of leukocyte adhesion molecules in lung ECs. Although these
CFTRKO mice do not display the inflammatory lung phenotype [20, 61], they do show signs of
subsymptomatic inflammation, for which the vasculature could thus at least be partly responsible by
promoting leukocyte adhesion and infiltration. Hence, CFTR impairment leads to an inflammatory EC
phenotype with increased activation and leukocyte extravasation, highlighting the potential, but overlooked
role of the endothelium as a mediator in the inflammatory process in CF. In support of a role of ECs in
immune regulation, we recently observed that freshly isolated tumour ECs from human lung cancers
expressed a transcriptome signature associated with diverse immune functions, suggesting a more
important function of disease ECs in immune surveillance than previously anticipated [62].

We propose that three potential interlinked underlying mechanisms give rise to this increase in
inflammation: 1) defective autophagy, 2) increased oxidative stress and 3) mitochondrial dysfunction
(figure 8). Our study provides several lines of evidence that autophagy might be defective in ECs with
impaired CFTR function. We observed increased protein levels of the autophagy marker LC3BI, thus
confirming autophagy induction. However, analysis of autophagic flux using LC3BII and TEM images
revealed autophagosome accumulation, indicating decreased autophagic flux due to defective
autophagosome maturation and/or autolysosome function. Although an autophagy impairment has been
reported in CF-deficient epithelial cells and macrophages, in which accumulation of p62 is documented
together with a decrease in LC3BII and autophagosomes [63, 64], our mechanism seems to be distinct
because it is characterised by an accumulation of autophagosomes. Autophagy is a highly dynamic process
with several components and mediators involved, including mTORC1, a key regulator of autophagosome
formation and lysosome biogenesis [65]. We observed increased mTORC1 activity in CFTRKD ECs,
suggesting inhibition of autophagy. Indeed, a prominent function of mTORC1 is to restrict autophagy
[42]; however, reactivation of mTORC1 is required for the termination of autophagy [66]. Defective
autophagy has already been associated with a pro-inflammatory phenotype in different cell types,
including ECs [67, 68], and could contribute to the pro-inflammatory phenotype in CF. In addition, it is
well established that impaired cellular proteostasis and autophagy are involved in the pathogenesis of CF
[69]. In fact, correcting the underlying proteostasis and autophagy defect has emerged as a novel
intervention strategy in CF [69].

Increased oxidative stress is another hallmark of CF pathophysiology [40]. We observed increased
oxidative stress in CFTR-impaired ECs, together with a striking transcriptomic signature in which multiple
antioxidant-related genes were upregulated. Although our data revealed that the rate-controlling enzyme
for GSH synthesis (a key intracellular antioxidant) was unchanged upon CFTR silencing, glutathione
disulfide (GSSG) and NADP+ levels were increased, suggesting increased oxidative stress. Our findings
confirm earlier studies in CF patients that documented heightened vascular oxidative stress, probably
scavenging the vasodilator nitric oxide (NO), leading to reduced NO bioavailability, EC activation and
dysfunction [70–72]. The role of excessive ROS levels in the respiratory system has mostly been
characterised in connection with chronic pulmonary infections and persistent inflammation [40].
Additionally, low GSH levels have been found in plasma and blood neutrophils from CF patients [73, 74]
and systemic GSH dyshomeostasis has already been suggested in CF [40]. Because of the heightened
oxidative stress in CF patients, CF research has also explored the potential of antioxidant treatment [40, 75].
Recently, an antioxidant cocktail treatment in CF patients improved both vascular and lung function [71].
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Although these results are promising, the beneficial effect of antioxidant therapy remains difficult to
evaluate in CF patients with chronic infections on intensive antibiotic treatments and warrants a
large-scale, long-term study [75].

Mitochondria can be ROS-producing organelles and CFTR function is necessary for optimal mitochondrial
function [76, 77]. We consistently found increased mitochondrial ROS in CFTR-impaired ECs. A previous
study in human bronchial epithelial cells reported that oxygen consumption and both mitochondrial
complex I and IV activities were impaired in CF epithelial cells, concomitantly associated with increased
mitochondrial ROS production and membrane lipid peroxidation [78]. We confirmed these findings in
ECs, finding that both basal and maximal respiration as well as mitochondrial ATP production were
decreased in CFTR-impaired ECs. Currently, the molecular mechanisms explaining how CFTR impairment
affects so many parameters of mitochondrial function remain unknown [78]. In the absence of efficient
removal of damaged mitochondria (mitophagy), ROS levels would be expected to rise. Our observations of
increased mitochondrial fission and impaired mitophagy suggest that increased mitochondrial damage is at
least partly responsible for the observed mitochondrial phenotype. However, we cannot conclude which
mechanism is initiating the mitochondriopathy: (mitochondrial) ROS inducing autophagy/mitophagy or
vice versa (figure 8). The process of autophagy/mitophagy in ECs might be particularly important in CF
because impairment of this pathway contributes to inflammasome activation [67, 79].

From our transcriptomics data, we observed downregulation of essential marker genes for proliferation, as
well as cyclins and cyclin-dependent kinases [80], consistent with our functional validation in vitro. The
mechanisms by which chloride fluxes are affecting interactions between cyclins and cyclin-dependent
kinases, thereby regulating cell cycle, are poorly characterised, especially in ECs. Although interesting, how
and if an EC proliferation defect might contribute to CF disease progression is currently unknown.

EC migration is a regulated multistep process involved in tissue formation, wound healing and
regeneration [81]. Upon CFTR impairment, ECs exhibited decreased migration, which is in accordance
with their transcriptomic signature. We also obtained evidence that CFTR is expressed at the lamellipodia
of migrating ECs and therefore is possibly involved in EC polarisation and migration. Our findings are
consistent with reports that CFTR regulates lamellipodia protrusion and cell migration in non-EC types
[82, 83]. It is becoming increasingly obvious that CFTR regulates cell migration across a diverse range of
cell types; however, the underlying mechanisms remain to be elucidated, given that delayed wound repair
may augment inflammation in CF [82].

The endothelium also functions as a semipermeable barrier where EC junctions dynamically open to allow
the passage of ions, nutrients and inflammatory cells for tissue homeostasis and immune surveillance. In
accordance with published literature [38, 39], we observed increased membrane permeability in CFTRKD

cells and CF patient-derived ECs. This was probably caused by the larger number of discontinuous
junctions present when CFTR was impaired. More interestingly, CFTRKD cells and CF patient-derived ECs
displayed higher fractions of reticulated adherens junctions. Such reticulated junctions are important in
controlling leukocyte transmigration [37, 46, 47]. This reinforces our hypothesis that CFTR impairment is
associated with a pro-inflammatory and leaky barrier, which could possibly contribute to the excessive
leukocyte extravasation observed in the lung of CF patients [84].

Our study has limitations and outstanding questions. For instance, how does CFTR, a protein in the
plasma membrane that regulates ion conductivity, regulate diverse processes such as endothelial
proliferation, migration, autophagy and inflammation? It is well known that CFTR is a promiscuous
protein that also functions as a protein hub for scaffolding proteins at the plasma membrane and in the
Golgi apparatus [85–87]. Protein–protein interactome analysis revealed that CFTR is involved in a wide
range of processes (including proteostasis, cytoskeleton remodelling, immune response, ROS signalling,
metabolism and proliferation), highlighting the complex underlying regulatory network [88]. Limitations
to our study are the low endogenous CFTR levels in ECs, making its detection challenging, and the fact
that we had to use a limited CFTRKD efficiency to avoid cellular toxicity at higher CFTRKD efficiency.
However, this incomplete CFTRKD was sufficient to induce the observed vascular inflammation and other
phenotypes, indicating its physiological relevance. It was thought that CF carriers (50% CFTR expression)
could remain healthy [89, 90]; however, it was recently observed that CF carriers have increased risk for a
wide range of CF-related conditions [91]. Thus, studying and comparing carrier- versus CF patient-derived
ECs would give insightful information. It is well established that gut-corrected CFTRKO mice are not an
ideal model organism to study CF because this model does not accurately reflect the human phenotype
[20, 61]. Given that CFTR is absent in almost all cell types, other cell types could also influence the
increased leukocyte extravasation found in murine CF lungs. However, endothelial leukocyte adhesion
markers were increased in murine CFTRKO lung ECs, suggesting that the endothelium could partially
mediate the excessive extravasation. Obtaining primary ECs from CF patients is challenging. We therefore
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used BOECs as an alternative, though the extent to which these cells reflect in situ organ-derived ECs
from CF patients needs studying. Nevertheless, we observed a similar pro-inflammatory signature in
BOECs from CF patients as in ECs with impaired CFTR function.

In conclusion, our findings provide new evidence that EC function is altered upon CFTR impairment,
with defective cell proliferation, migration and autophagy. Remarkably, altered CFTR expression led to EC
activation and a pro-inflammatory state, increasing leukocyte adhesion and extravasation in vitro, in vivo
and ex vivo. Our data raise the question of whether ECs should still be considered as passive bystanders in
CF pathology, or whether they actively co-determine the exaggerated inflammatory response. Hence, our
study may provide an incentive to consider EC normalisation as a new therapeutic approach to reduce the
pro-inflammatory status of ECs and thereby improve the quality of life of CF patients.
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