Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs

Agathe Jouet, Cyril Gaudin, Nelly Badalato, Caroline Allix-Béguec, Stéphanie Duthoy, Alice Ferré, Maren Diels, Yannick Laurent, Sandy Contreras, Silke Feuerriegel, Stefan Niemann, Emmanuel André, Michel K. Kaswa, Elisa Tagliani, Andrea Cabibbe, Vanessa Mathys, Daniela Cirillo, Bouke C. de Jong, Leen Rigouts, and Philip Supply

Affiliations: 1GenoScreen, Lille, France. 2BCCM/ITM, Mycobacteria Collection, Institute of Tropical Medicine, Antwerp, Belgium. 3Laboratory of Clinical Bacteriology and Mycology, Dept of Microbiology and Immunology, KU Leuven, Leuven, Belgium. 4National Tuberculosis Program, Kinshasa, Democratic Republic of the Congo. 5Emerging Bacterial Pathogens, IRCCS San Raffaele Scientific Institute, Milan, Italy. 6Unit Bacterial Diseases Service, Infectious Diseases in Humans, Sciensano, Brussels, Belgium. 7Mycobacteriology Unit, Dept of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium. 8Dept of Biomedical Sciences, Antwerp University, Antwerp, Belgium. 9Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204- CIIL (Center for Infection and Immunity of Lille), Lille, France. 10These authors contributed equally to this work.

Correspondence: Philip Supply, Institut Pasteur de Lille, U1019-UMR 8204-CIIL (Center for Infection and Immunity of Lille), 1 Rue du Prof Calmette, 59000 Lille, France. E-mail: philip.supply@ibl.cnrs.fr

@ERSpublications
The novel Deeplex Myc-TB molecular assay shows a high degree of accuracy for extensive prediction of susceptibility and resistance to 13 anti-tuberculous drugs, directly achievable without culture, which may enable fast, tailored tuberculosis treatment [https://bit.ly/3bAvcAt]


This single-page version can be shared freely online.

ABSTRACT Conventional molecular tests for detecting Mycobacterium tuberculosis complex (MTBC) drug resistance on clinical samples cover a limited set of mutations. Whole-genome sequencing (WGS) typically requires culture.

Here, we evaluated the Deeplex Myc-TB targeted deep-sequencing assay for prediction of resistance to 13 anti-tuberculous drugs/drug classes, directly applicable on sputum. With MTBC DNA tests, the limit of detection was 100–1000 genome copies for fixed resistance mutations. Deeplex Myc-TB captured in silico 97.1–99.3% of resistance phenotypes correctly predicted by WGS from 3651 MTBC genomes. On 429 isolates, the assay predicted 92.2% of 2369 first- and second-line phenotypes, with a sensitivity of 95.3% and a specificity of 97.4%. 56 out of 69 (81.2%) residual discrepancies with phenotypic results involved pyrazinamide, ethambutol and ethionamide, and low-level rifampicin or isoniazid resistance mutations, all notoriously prone to phenotypic testing variability. Only two out of 91 (2.2%) resistance phenotypes undetected by Deeplex Myc-TB had known resistance-associated mutations by WGS analysis outside Deeplex Myc-TB targets. Phenotype predictions from Deeplex Myc-TB analysis directly on 109 sputa from a Djibouti survey matched those of MTBSeq/PhyResSE/Mykrobe, fed with WGS data from subsequent cultures, with a sensitivity of 93.5/98.5/93.1%

Copyright ©ERS 2021. This version is distributed under the terms of the Creative Commons Attribution Licence 4.0.
and a specificity of 98.5/97.2/95.3%, respectively. Most residual discordances involved gene deletions/indels and 3–12% heteroresistant calls undetected by WGS analysis or natural pyrazinamide resistance of globally rare "Mycobacterium canetti" strains then unreported by Deeplex Myc-TB. On 1494 arduous sputa from a Democratic Republic of the Congo survey, 14902 out of 19422 (76.7%) possible susceptible or resistance phenotypes could be predicted culture-free.

Deeplex Myc-TB may enable fast, tailored tuberculosis treatment.