
S1-Model development
This section contains additional information on the model development section

Processing raw data
The raw curve data (raw_data) in NHANES 2011-12 was available as as a sequence of numeric values
representing change in volume in millilitres over a 0.01-second interval during forced expiration. We
obtain the time, volume and flow using python library numpy (np) as follows[1]:
time = np.arange(0, len(raw_data))*0.01
volume = (np.cumsum(raw_data))/1000
flow= np.diff(vol)/ np.diff(time)

where np.arrange (returns evenly spaced values in an interval), np.cumsum (cumulative sum) and
np.diff (first order difference) are numpy-based functions. Here, time, volume and flow are 1D arrays

Once the data was processed, we removed any trailing forced inspiratory signal at the end of forced
expiration.

Generating pixel matrixes
We generated the pixel matrices of the maximal expiratory flow-volume loop (MEFC) with an aspect
ratio of two units of flow for each unit of volume in accordance with the display guidelines of ATSERS
for flow-volume curves. We do this as follows:

We first determine the maximum range (yf) to be represented in the pixel matrix
yf = max(flow) - min(flow)
if yf < 2 x (max(volume) - min(volume)) , then yf = 2 x (max(volume) - min(volume))

Then, we initialise an identity matrix of dimension pxl x pxl. In our study, pxl=32
pxl_matrix = np.ones((pxl,pxl))

Then, we map the flows and volumes to corresponding pixel location
I_pxl = (2*((pxl-1)/yf) * volume)
J_pxl = (((pxl-1)/yf) * flow)
pxl_matrix [J_pxl, I_pxl] = 0

Convolutional neural network (CNN) architecture
We use a convolutional neural network that takes the 32x32 MEFVC matrix as input. We first

describe the building blocks of our model[2].

Building blocks

a) Convolutional block

A convolutional block (Figure S1) consists of the following three operations in sequence:

i) Convolution (CONV): A CONV layer consists of a set of learnable filters, which are spatially

small but extends through the depth of the input volume. For example, a typical filter on

the first convolutional block may have a size of 3x3x1 (i.e. 3 pixels width and height and 1

because the images have a single channel). During a forward pass, we slide the filter over

the width and height of the input volume and produce a 2-dimensional activation map that

gives the responses of that filter at every spatial position. Similarly, a set of K filters will

produce K two-dimensional activation maps, which we stack along the depth dimension

and produce the output volume. Intuitively, we can interpret that the network will learn a

set of K filters that activate when they see some type of visual feature such as an edge of

some orientation on the first layer, or eventually entire honeycomb or wheel-like patterns

on later blocks/layers of the network.

Mathematically, a discrete 2D convolution operation can be written as follows:

𝑦[𝑚, 𝑛, 𝑑] = ∑ ∑ 𝑓[𝑢, 𝑣] . 𝑘𝑑[𝑢 − 𝑚 , 𝑣 − 𝑛]

∞

𝑣=∞

∞

𝑢=−∞

+ 𝑏𝑑 , 𝑑 = 1,2. . 𝐾𝑖

where y[m,n, d] is the result of the convolutional operation at column m and row n for the

dth filter, 𝑓[𝑖, 𝑗] represents a depth slice at column i and row j of the input volume, kd is

called a filter or kernel which is a square weight matrix of size Fi that is translated over the

input volume and bd is a bias. To summarize, a CONV layer at the ith convolutional block:

• Accepts an input volume X1i of size W1i x H1i x D1i

• Performs a 2D convolution operation with the hyper-parameters some of which

are fixed by us:

o Number of filters (Ki)

o The filter width and height (Fi = 3)

o The filter stride (Si = 1)

o The amount of zero padding (Pi = 0)

Results in a total of (Fi . Fi . D1i). Ki weights and Ki biases

• Produces an output volume X2i of size W2i x H2i x D2i where

o W2i = (W1i – Fi + 2Pi)/Si + 1

o H2i = (H1i – Fi + 2Pi)/Si + 1

o D2i = Ki

ii) Rectified linear unit (ReLU): The output volume from the previous step is passed through

the ReLU activation function that introduces non-linearity as follows:

𝑦 = max (0, 𝑥)

 In other words, the activation is simply thresholded at zero. We can summarize the

 computations in this step as follows:

• Accepts X2i as input

• Applies the ReLU activation function

• Produces an output volume X3i of size W2i x H2i x D2i

iii) Max pooling (MAXPOOL): The function of the pooling layer is to progressively reduce the

spatial size of the representation to reduce the amount of parameters and computation in

the network, and hence to also control overfitting. The MAXPOOL Layer operates by

considering a MPi x MPi region with a stride SPi over a given 2D slice and outputs a single

value, which is the maximum in that region. It operates independently on every depth slice

of the input and it has no learnable parameters. We can summarize the computations in

this layer as follows:

• Accepts X3i as input

• Performs MAXPOOL that requires the hyper-parameters:

o The spatial extent (MPi = 2)

o The stride (SPi = 2)

• Produces an output volume X4i of size W3i x H3i x D3i where

o W3i = (W3i – MPi)/SPi + 1

o H3i = (H3i – MPi)/SPi + 1

o D3i = D2i

b) Fully connected (FC) network (neural network)

A FC network (Figure 6) consists of a standard feed-forward neural network with one hidden

layer and a single neuron output layer. The activation of the hidden layer 1 can be expressed

as follows:

𝐴1 = 𝑅𝑒𝐿𝑈(𝑊1. 𝐴0 + 𝐵1)

where W1 is a n1 x n0 weight matrix where n1 denotes the number of neurons in layer 1, A0 are

the activations from the previous layer of length n0 x 1 which in our case would be a flattened

output volume, Bl is the bias and ReLU is an activation function defined as:

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)

 The computation in the final layer is written as:

 𝑌̂ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓 . 𝐴1 + 𝐵𝑓)

where 𝑌̂ is a scalar value between 0 and 1, 𝑊𝑓 is a weight matrix of size 1x n1 and 𝐵𝑓 is the

single bias term in the final layer. The sigmoid function is defined as:

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥

To summarize, the FC network:

• Accepts a vector of length n0 x 1

• Performs a feed-forward computation involving the hyperparameters:

o The number of hidden layer neurons n1

Results in a total of (n0 . n1 + n1) weights and 𝐵1 + 1 biases

• Produces a scalar value 𝑌̂

Figure S1 Flow of computations inside a convolutional block

Figure S2 Activations and weight matrices
W in a FC network

Model training

The cross-entropy error (Loss) was used to quantify the loss and the cost function J was described as

the average cross-entropy error over the training set. Mathematically,

𝐿𝑜𝑠𝑠(𝑌𝑖 , 𝑌𝑖̂) = −{𝑌 log 𝑌̂ + (1 − 𝑌) log (1 − 𝑌̂)}

 𝐽(𝑊) =
∑ 𝐿𝑜𝑠𝑠(𝑌𝑖, 𝑌𝑖̂)

𝑚𝑡𝑟𝑎𝑖𝑛
𝑖=1

Ntrain
+ 𝜆 ∑ 𝑊. 𝑊

In the above equation, 𝑌𝑖 refers to the label of the ith training example which is either 1 (acceptable) or

0 (rejected), 𝑌𝑖̂ refers to the probability calculated by the model corresponding ith training example, W

represents the weighs of the entire network and λ is the L2 regularization parameter used to prevent

overfitting. W is updated using gradient descent:

𝑊 ≔ 𝑊 − 𝛼
𝜕𝐽

𝜕𝑊

where α is the learn rate. In our case, we use batch gradient descent with a batch size of nbatch with

Adam optimization scheme[3] to train the model. The number of epochs used are nepochs resulting in a

total of (mtrain /nbatch) x nepochs iterations.

Hyperparameter tuning

Parameters that are not calculated by gradient descent are called hyperparameters. The following

hyper-parameters were considered for optimization in our study:

• The learn rate (α)

• Batch size (nbatch)

• Number of epochs (nepochs)

• L2 regularization (λ)

• Dropout rate between flattened volume and first hidden layer (dr)

• No of filters in the first convolution block of both branches (K1)

• No of filters in the second convolution block of both branches (K2)

• No of filters in the third convolution block of both branches (K3)

For each set of hyper-parameters, the model is trained and prediction probabilities are calculated on

the validation set. A threshold of 0.5 is used to assign a prediction label i.e. a manoeuvre with a

probability of greater than 0.5 is assigned an acceptable label (1) and with a probability of lesser than

0.5 is assigned a rejected label (0).

The cost function Jhp for optimizing the hyper-parameters of the CNN is an average of validation

sensitivity and specificity.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 ,

 𝐽ℎ𝑝 = −0.5 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)

where TP is true positives, FN is false negatives, TN is true negatives and FP is false positives. We

using a Bayesian search scheme [4] with 100 evaluations to solve the following optimization problem:

min
𝛼, 𝑛𝑏𝑎𝑡𝑐ℎ,𝑛𝑒𝑝𝑜𝑐ℎ𝑠,𝜆,𝑑𝑟,𝐹1,𝐹2,𝑛𝑙

𝐽ℎ𝑝(𝛼, 𝑛𝑏𝑎𝑡𝑐ℎ, 𝑛𝑒𝑝𝑜𝑐ℎ𝑠, 𝜆, 𝑑𝑟, 𝐹1, 𝐹2, 𝐹3)

Model interpretability
A direct interpretation of CNN is difficult; therefore we used a game-theoretic approach called Shapley

values to interpret our model’s output[5]. The Shapley value of a feature value is its contribution to

the output, weighted and summed over all possible feature value combinations. The formula for

Shapley value is:

𝛷𝑗 = ∑
|𝑆|! (𝑝 − |𝑆| − 1)!

𝑝!
𝑆 ∈{𝑥1,…𝑥𝑝}\{𝑥𝑗}

 (𝑓(𝑆 𝑈 {𝑥𝑗} − 𝑓(𝑆))

Where x1....xp represents the set of p input features for function f, xj is the desired feature, Φj is the

Shapley value of feature j, S is a combination of inputs without including xj (done by replacing value of

xj with a background value from the dataset), 𝑆 𝑈 {𝑥𝑗} includes feature xj

To calculate Shapley values in our study, we first divided the MEFVC pixel matrix into 2 regions:

MEFVC<1s containing the MEFVC pixels from the point of maximum inspiration until 1 second after

time 0, and MEFVC>1s containing the rest remaining curve. This division can be observed in figure s3

where a vertical line on the 20th pixel divides the matrix into two regions. Then using a technique called

Shapley additive explanation (SHAP) [6], which allows a faster but approximate Shapley value

calculation, we estimated how MEFVC<1s, MEFVC>1s, BEV criteria, tFE>6s, EOP and tPEF contributed

to the model’s output. To simulate the effect of background value, we replaced these inputs by

randomly drawing instances from our training dataset. For MEFVC<1s and MEFVC>1s, we replaced all

the pixels for corresponding regions from a randomly drawn pixel matrix. In this example, this would

amount to replacing all pixels between vertical lines 0 and 20 for MEFVC<1s and between vertical lines

20 and 32 for MEFVC>1s.

References
1. Klein B, Klein B. NumPy. Einführung Python 3 2014.

2. LeCun Y, Bengio Y, Hinton G, Y. L, Y. B, G. H. Deep learning. Nature 2015; 521: 436–444.

3. Kingma DP, Ba JL. Adam: a Method for Stochastic Optimization. Int. Conf. Learn. Represent.
2015 2015; : 1–15.

4. Bergstra J, Yamins D, Cox DD. Hyperopt: A python library for optimizing the hyperparameters
of machine learning algorithms. 12th PYTHON Sci. CONF. (SCIPY 2013) [Internet] 2013; : 13–
20Available from:
http://hyperopt.github.io/hyperopt/%5Cnhttps://github.com/jaberg/hyperopt%5Cnhttp://w
ww.youtube.com/watch?v=Mp1xnPfE4PY.

Figure S3 Maximal expiratory flow volume loop pixel

matrix partitioned into two regions, MEFVC<1s and

MEFVC>1s, at a location corresponding to FEV1

5. Shapley LS. A value for n-person games. The Shapley value 2009.

6. Lundberg SM, Lee SI. A unified approach to interpreting model predictions. Adv. Neural Inf.
Process. Syst. 2017.

