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ABSTRACT
Rationale: While American Thoracic Society (ATS)/European Respiratory Society (ERS) quality control
criteria for spirometry include several quantitative limits, it also requires manual visual inspection. The
current approach is time consuming and leads to high intertechnician variability. We propose a deep-
learning approach called convolutional neural network (CNN), to standardise spirometric manoeuvre
acceptability and usability.
Methods and methods: In 36873 curves from the National Health and Nutritional Examination Survey
USA 2011–2012, technicians labelled 54% of curves as meeting ATS/ERS 2005 acceptability criteria with
satisfactory start and end of test, but identified 93% of curves with a usable forced expiratory volume in
1 s. We processed raw data into images of maximal expiratory flow–volume curve (MEFVC), calculated
ATS/ERS quantifiable criteria and developed CNNs to determine manoeuvre acceptability and usability on
90% of the curves. The models were tested on the remaining 10% of curves. We calculated Shapley values
to interpret the models.
Results: In the test set (n=3738), CNN showed an accuracy of 87% for acceptability and 92% for usability,
with the latter demonstrating a high sensitivity (92%) and specificity (96%). They were significantly
superior (p<0.0001) to ATS/ERS quantifiable rule-based models. Shapley interpretation revealed
MEFVC<1 s (MEFVC pattern within first second of exhalation) and plateau in volume–time were most
important in determining acceptability, while MEFVC<1 s entirely determined usability.
Conclusion: The CNNs identified relevant attributes in spirometric curves to standardise ATS/ERS
manoeuvre acceptability and usability recommendations, and further provides individual manoeuvre
feedback. Our algorithm combines the visual experience of skilled technicians and ATS/ERS quantitative
rules in automating the critical phase of spirometry quality control.
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Introduction
The validity of spirometric indices such as forced expiratory volume in 1 s (FEV1) and forced vital capacity
(FVC) depends on the quality of forced expiratory manoeuvre. The American Thoracic Society (ATS) and
European Respiratory Society (ERS) have published joint guidelines that describe the within-manoeuvre
acceptability criteria [1]. Furthermore, ATS/ERS provide recommendations on the usability of a
manoeuvre when it does not meet a satisfactory end of test (EOT), but still contains a valid FEV1.

The evaluation of forced expiratory manoeuvre acceptability involves quantitative criteria, namely
back-extrapolated volume (BEV), time of forced expiration (tFE) and existence of a plateau (EOP) in a
volume–time curve. Additionally, the current guidelines include descriptive protocols that require a
technician to visually evaluate if a manoeuvre is free from artefacts such as cough in first second, glottis
closure, early termination, nonmaximal effort, obstructed mouthpiece, etc. [1, 2]. For usability (i.e. whether
an FEV1 can be reported), the criteria are based on an acceptable BEV and the technician’s judgement to
interpret whether the measurement of FEV1 was accurate [1, 3]. Based on these current guidelines,
whether or not a spirometry manoeuvre is acceptable or usable can vary according to the training and
experience of the technician. In some cases, agreement between technicians can be as low as 52% for an
individual manoeuvre [4]. Differences in overall test quality in large population studies have been
attributed to the complexity of acceptability criteria and professional background of the reviewers [5].
Moreover, spirometry manoeuvre quality can differ widely between the settings of epidemiological studies
with standardised protocols on spirometry training [6, 7], specialised pulmonary function laboratories and
primary care practice [8].

Advances in deep-learning techniques may provide a tool to automate spirometry manoeuvre acceptability
and usability. Ideally, an algorithm should provide holistic feedback on manoeuvre acceptability in
addition to standard BEV, tFE and EOP criteria. In the past, researchers have proposed machine-learning
models that utilise manually selected features from maximal expiratory flow–volume curve (MEFVC) to
determine acceptability [4, 9]. However, the features employed were not only difficult to interpret, but also
fail to capture all possible artefacts, making them less robust for application in practice. Deep-learning
models such as convolutional neural networks (CNN) have become the dominant method in computer
vision tasks, and their application in medical imaging has produced astonishing results [10]. A CNN
learns representations directly from data for the required task [11], and thus is superior to prior
feature-driven approaches. Since spirometry review is accomplished by visual inspection of the MEFVC
and volume–time curves [2], we hypothesise that application of a CNN is ideal for automation of
acceptability and usability criteria.

In this study, we aim to develop a CNN to determine spirometry manoeuvre ATS/ERS acceptability and
usability using data from the National Health and Nutritional Examination Survey (NHANES) USA 2011–
2012 [12]. In addition, we describe methodology that allows interpretation of the model to provide
feedback to the user.

Materials and methods
Study subjects
NHANES 2011–2012 spirometry component
Spirometry data were collected in NHANES 2011–2012. Eligible participants aged 6–79 years performed
baseline spirometry; a subset who met additional screening criteria performed post-bronchodilator
spirometry [12].

Quality control
Technicians who completed the National Institute for Occupational Safety and Health (NIOSH)-approved
spirometry course performed regular quality checks of equipment and spirometry measurements. A chief
health technician on site supervised the performance of the technicians, while experts at NIOSH quality
control reviewed all spirometry data on an ongoing basis. The goal of the technicians was to attain three
acceptable and two reproducible curves using ATS/ERS 2005 recommendations [1]. More details on
quality control measures can be referred in the NHANES spirometry procedures manual [13].

Data
The NHANES 2011–2012 dataset contained 6696 pre- and 458 post-bronchodilator tests, resulting in 37
661 trials. Only 2% of trials did not have curve data. For the remaining tests the raw data were available as
a sequence of numeric values representing change in volume in millilitres over a 0.01-s interval during
forced expiration [14]. Technicians had assigned an effort-rating variable “SPAQEFF” to individual curves
as follows. A: the curve quality attributes were acceptable (n=19828); B: the curve had a large time to peak
flow or a nonrepeatable peak flow (n=5890); C: the curve had either <6 s of exhalation or no plateau
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(n=8605); D: the curve had either a cough or large extrapolated volume (n=2550). Furthermore, a variable
“SPAACC” indicated that curves with ratings A, B and C (n=34323) were used for obtaining FEV1 or
FVC. Only curves with rating D were rejected in NHANES 2011–2012.

Study design
In this retrospective analysis of the NHANES 2011–2012 dataset, we aimed to develop, validate and
interpret a deep-learning model that determines acceptability and usability of spirometry manoeuvres.
Curves with an effort-rating of A were deemed as the gold standard for ATS/ERS acceptability criteria (i.e.
satisfactory start and end of test). Curves with effort-ratings A, B or C were considered as the gold
standard for usable manoeuvers (i.e. reportable FEV1).

Model development
Processing of input
First, we processed the raw data into time, flow and volume measurements, which began at the point of
maximum inspiration until residual volume. Then, we generated 32×32 pixel matrices of MEFVC with an
aspect ratio of two units of flow for each unit of volume in accordance with the display guidelines of ATS/
ERS for MEFVC (supplement S1) [1]. Figure 1 shows an example of an MEFVC pixel matrix where the
white spaces and black lines denote a pixel value of one and zero, respectively. In addition, we defined
time zero (t0) by the ATS/ERS back-extrapolation technique to calculate BEV (extrapolated volume
< maximum of 5% of FVC or 0.15 L) and tFE (difference between time at residual volume and t0) >6 s
criteria. We defined EOP as no change in volume (⩽0.025 L) in volume–time curve for ⩾1 s of expiration
[1]. Finally, we calculated time to peak expiratory flow (tPEF) from t0. All input processing was done using
Python scripts [15].

Development and test data
We split NHANES spirometry sessions (n=7154) randomly into 80% for training (5726 sessions or 29452
curves), 10% for validation (711 sessions or 3683 curves) and 10% for testing (710 sessions or 3738 curves).
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FIGURE 1 Processing of input. Flow–volume data are converted into 32×32-pixel matrices of maximal
expiratory flow–volume loop (supplementary material). The white and the black regions represent a pixel
value of 1 and 0, respectively. Furthermore, American Thoracic Society/European Respiratory Society
recommendations are used to compute criteria (true/false) associated with back-extrapolated volume (BEV),
time of forced expiration >6 s (tFE>6 s) and existence of plateau (EOP) from the volume–time curve, along with
time to peak expiratory flow (tPEF).
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Additionally, we ensured that the training set included all post-bronchodilator sessions (n=458). Thus,
each set had unique sessions with non-overlapping individuals. We developed our models using the
development set (training and validation set) and evaluated them on the test set.

Manoeuvre acceptability model
We show the CNN architecture in figure 2. The MEFVC pixel matrix is passed into a convolutional layer
composed of three convolutional blocks. The output of the convolutional layer, which represents features
learned from the MEFVC, along with other input features, are passed into a fully connected network. The
final output of the model is the probability of manoeuvre acceptability, with a value >0.5 considered as
acceptable. We trained the model against the gold standard labels for acceptability (A-rated curves, 54%)
in the training set and tuned its hyperparameters in the validation set. More details on CNN architecture
and model development can be found in supplement S1. We used Keras deep-learning Python library with
Tensorflow backend for model development [16].

Manoeuvre usability model
Since the proportion of usable curves (A-, B- or C- rated curves, 93%) were disproportionately larger than
discarded curves (D-rated), we first subsampled the training set to include all the discarded curves
(n=2022) along with 700 of each of A-, B- and C-rated curves to create a balanced dataset of usable and
unusable curves. Then, using a transfer-learning approach [17], we recalibrated our acceptability model to
predict manoeuvre usability. We considered a manoeuvre usable if the output probability was >0.5.

Model interpretability
We used a game theory based concept called Shapley value to estimate the evidence from different
portions of the MEFVC and other ATS/ERS-based features towards the model’s output of acceptability
and usability [18]. To quantify the visual evidence from start of test, which affects FEV1 measurement, we
considered the pattern of MEFVC from maximum inspiration until 1 s after exhalation begins
(MEFVC<1 s). This was achieved by dividing the MEFVC pixel matrix horizontally into two-pixel regions,
MEFVC<1 s and MEFVC>1 s, at the point of FEV1 (supplement S1). Then, we calculated the Shapley
values of pixels associated with MEFVC<1 s and MEFVC>1 s along with BEV criteria, tFE>6 s, EOP and
tPEF using a technique called Shapley additive explanation [19]. A positive Shapley value is interpreted as
evidence supporting a model’s prediction, while a negative Shapley value is counter-evidence. The
magnitude of Shapley value denotes the strength of the contribution.

Statistical analysis
We used one-way ANOVA to analyse differences in means between effort-ratings. Chi-squared tests were
used to compare proportions across the effort ratings. We reported the model’s performance using
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FIGURE 2 Convolutional neural network architecture. The pixel matrix of maximal expiratory flow–volume loop (MEFVC) is passed through a
convolutional layer composed of three convolutional blocks (supplementary material). The convolved output, which represents features from the
MEFVC, along with back-extrapolated volume (BEV) criteria, time of forced expiration >6 s (tFE>6s), existence of plateau (EOP) and time to peak
expiratory flow (tPEF), are fed into a simple neural network. The final output is the probability of manoeuvre acceptability, which is considered
acceptable if >0.5.
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accuracy, sensitivity, specificity, positive predicted value, negative predicted value (NPV) and area under
the receiver operating characteristic curve (AUROC) in the test set. We used McNemar’s test to compare
the model’s accuracy against a simple ATS/ERS algorithm that predicts acceptability and usability when
BEV criteria and EOT (tFE>6 s or EOP) criteria are met. This comparison reflects the integration of the
current ATS/ERS algorithm into commercial spirometry software. We interpreted the model using bar
plots of Shapley values for individual curves and summarised the Shapley value evidence in the entire
population using forest plots. Using multiple paired-proportion tests, we compared spirometry sessions
that satisfied ATS/ERS repeatability criteria in gold-standard (technician evaluation), CNN and the ATS/
ERS rules-based acceptable curves [1]. Finally, we used multiple paired t-tests to compare the distribution
of best FEV1 and FEV1/FVC ratio after applying repeatability criteria or by selecting highest FEV1 and
FVC whenever repeatability failed. All results were reported on the test set (n=3738 curves or 710
sessions). The significance level was 0.05 and values were expressed as mean±SD or median (interquartile
range). All statistical analysis was performed using R software version 3.3.3 [20].

Results
Baseline characteristics
There were a total of 36873 curves available with raw data and a label from skilled technician in NHANES
2011–2012 (e.g. A–D). Just over half (54%) satisfied ATS/ERS acceptability criteria, whereas 93% were
considered useful (i.e. reportable FEV1). Table 1 shows a summary of the ATS/ERS quantitative features
across the effort quality ratings. The BEV criteria and EOP were satisfied in 97% and 100% of the A-rated
curves, respectively, supporting that A-rated curves contained a satisfactory start and EOT. Furthermore,
tPEF was highest in B-rated curves (0.13±0.07 s, n=5890) while EOP was achieved only in 8% of the
C-rated curves (n=8605), agreeing with their respective label description. Finally, BEV criteria and EOP
were satisfied in less than half of the rejected curves (D-rated, n=2550).

Model evaluation
In the test set (n=3738 curves), the CNN to determine ATS/ERS manoeuvre acceptability criteria
(A-rating, prevalence 54%) resulted in an accuracy of 87% with a good sensitivity (87%) and specificity
(86%). The model to determine ATS/ERS manoeuvre usability (A-, B- or C-rating) demonstrated an
excellent accuracy (92%), sensitivity (92%) and specificity (96%) but a low NPV (50%), as prevalence of
usable curves (93%) dominated over rejected curves (table 2). In addition, we observed high AUROC in
both the cases (0.93 and 0.98, respectively; figure S1).

Comparison against ATS/ERS quantitative criteria
A simple ATS/ERS rule-based algorithm that predicted manoeuvre acceptability and usability when BEV
criteria, tFE>6 s and EOP were satisfied resulted in a significantly lower (p<0.0001) accuracy (78% and 66%,
respectively) and AUROC (0.78 and 0.73, respectively; figure S1) when compared to the CNN models
(table 2). This demonstrated the advantage of analysing the qualitative aspects of the MEFVC in addition
to the simple ATS/ERS quantitative criteria.

TABLE 1 Baseline characteristics of spirometry curves and their effort ratings from the
National Health and Nutritional Examination Survey USA 2011–2012

A B C D p-value
All curve quality
attributes were

acceptable

Large time to PEF
or a nonrepeatable

PEF

<6 s of
exhalation or
no plateau

Cough or large
extrapolated

volume

Curves n 19828 5890 8605 2550
EOP 97 96 8 49 <0.001
tFE>6 s 91 87 10 45 <0.001
BEV criteria 100 99 99 44 <0.001
tPEF s 0.07±0.02 0.13±0.07 0.10±0.07 0.21±0.18 <0.001

Data are presented as % or mean±SD, unless otherwise stated. PEF: peak expiratory flow; EOP: existence of
plateau in volume–time curve defined as no change in volume (⩽0.025 L) for ⩾1 s of expiration; tFE>6 s: time
of forced expiration, defined as difference between time at residual volume and time 0 obtained by
back-extrapolation, is >6 s; BEV: back-extrapolated volume is less than the maximum of 5% of forced vital
capacity or 0.15 L; tPEF: time to PEF from time 0.
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Model interpretability
For a manoeuvre predicted as acceptable (probability of acceptability (P(acceptability))=0.90), we show the
MEFVC and volume–time curve along with a Shapley value evidence plot in figure 3a. A satisfactory start
of test is supported by a positive Shapley value (0.13) from MEFVC<1s (MEFVC pattern in first second of
exhalation) indicating no artefacts in this region, and dominant over a compliant BEV which was
considered redundant (Shapley value 0). A satisfactory EOT is also evidenced by positive evidence from
EOP (Shapley value 0.095) and tFE>6 s (Shapley value 0.075).

In figure 3b, we show a manoeuvre predicted as unacceptable (P(acceptability)=0.21) but usable
(P(usability)=0.91). The main reason for unacceptability stems from an unsatisfactory EOT due to a lack
of EOP (Shapley value −0.31). However, we can observe that this curve might have a valid FEV1 due to
positive evidence from MEFVC<1s (Shapley value 0.11).

Finally, we show a manoeuvre predicted as unusable (P(usability)=0.16) with an evidence plot for usability
in figure 3c. The highest counterevidence comes from MEFVC<1s (Shapley value −0.38), and we can
clearly see cough artefacts on the corresponding highlighted section of MEFVC. Interestingly, this curve
had a compliant BEV and a satisfactory EOP and tFE>6 s, but their evidence was comparatively very low.

Global interpretability
In figure 4a, we summarise the Shapley value evidence towards prediction of manoeuvre acceptability in
the test set (n=3738 curves). MEFVC<1s (supporting evidence 0.137 (0.053), counter-evidence −0.249
(0.175)), and EOP (supporting evidence 0.095 (0.016), counter-evidence −0.276 (0.113)) were the most
important factors in determining acceptability. Furthermore, MEFVC<1s was the single most important
contributor (supporting evidence 0.365 (0.07), counterevidence −0.335 (0.086)) in determining curve
usability (figure 3b). We further confirmed that a positive Shapley value for MEFVC<1s (0.142 (0.051))
and a EOP (0.096 (0.001)) were the strongest contributors in a subgroup that was predicted as acceptable
(n=2021; figure S2a), while a negative Shapley value of MEFVC<1s (−0.336 (0.079)) was the strongest
contributor in curves predicted as discarded (n=548; figure S2b).

On examining a subgroup of curves that were predicted as unacceptable but usable (n=1211, figure S2c),
we observed that a lack of EOP provided the most evidence against acceptability (−0.22 (0.363)). This
implied that curves with a failed EOT criteria (61% of n=1211) still contained a usable FEV1. In addition,
we observed strong counterevidence from MEFVC<1s (−0.172 (0.378)), which was due to presence of
B-rated curves (25% of n=1211) that contained a nonrepeatable or a large time to peak flow.

Effect on distribution of best FEV1 and FEV1/FVC
In the test set spirometry sessions (n=710), we observed no significant differences (p>0.10) in the
proportion of satisfactory repeatability criteria between the CNN (81%), gold standard (82%) and ATS/
ERS algorithm (86%).

Furthermore, the best FEV1 after checking repeatability criteria was not statistically different (p>0.05) in
CNN and ATS/ERS approaches from the gold standard (2.76±0.83 L). However, significant differences
(p<0.001) in FEV1/FVC ratio were observed between the gold standard (82±7.7%) and ATS/ERS approach,
but not between gold-standard and CNN approaches (p>0.05). Finally, we noted small differences in lower
limit of normal (=mean−1.645 SD) between the three approaches (table S1).

Discussion
We developed a novel deep-learning approach using CNN to classify spirometry manoeuvre according to
ATS/ERS acceptability criteria with a valid start and EOT. The model was both sensitive (90%) and

TABLE 2 The performance of a convolutional neural network (CNN) and a rule-based American
Thoracic Society/European Respiratory Society algorithm at predicting manoeuvre acceptability
and usability in the test set (n=3738 curves)

Accuracy % Sensitivity % Specificity % PPV % NPV % AUROC

CNN acceptability 87 90 85 85 89 0.93
Rule-based acceptability 78 88 67 73 84 0.78
CNN usability 92 92 96 99 50 0.98
Rule-based usability 66 65 82 98 16 0.73

PPV: positive predictive value; NPV: negative predictive value; AUROC: area under the receiver operating
characteristic curve.
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specific (85%) when evaluated on a test set (n=3738 curves). The acceptability model was then recalibrated
to identify usable curves (reportable FEV1) with a high sensitivity (92%) and specificity (96%). Model
interpretation results show that MEFVC<1s and EOP were the most important factors in determining
acceptability, while MEFVC<1s entirely determined usability. Thus, our models captured the expected
attributes from raw data to concur with ATS/ERS recommendations on manoeuvre acceptability that
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FIGURE 3 Interpreting the convolutional neural network (CNN). The evidence, as quantified by Shapley values, from maximal expiratory flow
volume from maximum inspiration until 1 s after exhalation begins (MEFVC<1s), MEFVC after 1 s of exhalation (MEFVC>1s), back-extrapolated
volume (BEV) criteria, time of forced expiration >6 s (tFE>6 s), existence of plateau (EOP) and time to peak expiratory flow (tPEF) in examples of
curves predicted as a) acceptable with satisfactory start and end of test (P(acceptability)=0.90); b) unacceptable but usable (P(acceptability)=0.25,
P(usability)=0.91) and c) unacceptable and unusable (P(acceptability)=0.02, P(usability)=0.16). P(acceptability): probability of acceptability;
P(usability): probability of usability.
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mandate a satisfactory start and EOT. In addition, they adhered to ATS/ERS recommendations on
manoeuvre usability that mandate an undisturbed FEV1. Thus, this automated approach for spirometry
quality control that combines both the visual experience of technicians and ATS/ERS quantitative
ruleshelps in standardising the application of ATS/ERS guidelines of within-manoeuvre acceptability and
usability criteria.

The most interesting aspect of the CNN approach is that while it adheres to the ATS/ERS quantitative
rules, it also adds consistency in interpreting the protocols that currently suffer from variability arising
from visual evaluation [4, 5, 8]. A real-life application would involve determining acceptability and
usability of individual manoeuvres by the CNN approach followed by checking the ATS/ERS repeatability
criteria and finally reporting the best test results and session grades [21]. By collaborating with spirometry
manufacturers, the application can provide manoeuvre feedback in real time, and thereby assist technicians
and primary care physicians in daily practice to comply better with ATS/ERS standards. In mobile
spirometry [22], our system can remotely verify acceptability requirements and further provide feedback to
the user. Additionally, our application could be used as an independent module during retrospective
evaluation of spirometry curves (e.g. clinical and epidemiological studies) and in cases where spirograms
are remotely reviewed by humans [23].

Our study is the first to analyse MEFVC as a pixel matrix (image) using deep learning. This approach
leads to a significantly superior performance (p<0.0001) when compared to a rule-based algorithm
containing just ATS/ERS quantifiable criteria (accuracy=78% versus 87% for acceptability and 66% versus
92% for usability). Moreover, unlike the rules-based approach, the distribution of best FEV1 and FEV1/
FVC ratio after repeatability criteria does not change between gold standard and the CNN, implying its
implementation will not change clinical outcomes involving cut-offs for abnormality diagnosis. However, a
demographic-based analysis may be required to completely establish these facts. We further noted
that MEFVC<1s was dominant over BEV in determining acceptability and usability. This is because
MEFVC<1s could capture a host of anomalous patterns associated with cough in first second, variable
effort, obstructed mouthpiece, submaximal blast, etc. in addition to the hesitation pattern associated with
excessive extrapolated volume [24]. Finally, our approach exploits the efficient pattern recognition
capabilities of deep learning and also generates clear explanations providing a dual benefit of accuracy and
explainability, which is often a trade-off [25]. Our Shapley value explanations provide a hybrid system that
quantifies the visual or qualitative evidence from MEFVC pattern and the objective evidence from ATS/
ERS criteria.

While the current paradigm of determining manoeuvre acceptability and usability may be enough for
clinical practice, further determining the artefact type in a manoeuvre could have underscored the power

MEFVC<1s

a) b)

MEFVC>1s

BEV

EOP

–0.6 –0.4

Against ForShapley value

–0.2 0.0 0.2 0.4 0.6

tFE>6s

tPEF

MEFVC<1s

MEFVC>1s

BEV

EOP

tFE>6s

tPEF

–0.6 –0.4

Against ForShapley value

–0.2 0.0 0.2 0.4 0.6

FIGURE 4 Global interpretability. Forest plots summarising evidence, quantified by Shapley values, from maximal expiratory flow volume curve
pattern within first second of exhalation (MEFVC<1s), MEFVC after first second of exhalation (MEFVC>1s), back-extrapolated volume (BEV) criteria,
time of forced expiration >6 s (tFE>6 s), existence of plateau (EOP) and time to peak flow (tPEF), in determining curve a) acceptability and b) usability
in the test set (n=3738 curves).
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of artificial intelligence in achieving a detailed level of interpretation. In this study, only a rudimentary
characterisation of artefacts was available such as poor peak flow, nonsatisfactory EOT or cough. At this
stage, these artefacts are represented in negative Shapley values of MEFVC<1s or MEFVC>1s. In the
future, we believe that algorithms, which could also point to the presence of specific artifacts (hesitation,
variable effort, cough, etc.) in addition to acceptability and usability, will further improve real-time
feedback to the end-user.

A direct comparison with past methods may not be fair [4, 9], as their sample sizes were quite small,
contained different labels and involved manual selection and tuning of features [11, 26]. By contrast, the
current CNN identifies the requisite features associated with a valid MEFVC without the explicit need for
manual programming and further takes advantage of the availability of a large labelled dataset. Although
other choices of input data (e.g. sequential flow data) and deep-learning frameworks (e.g. using recurrent
networks) may work, our choice of input and modelling (a technician inspecting MEFVC and volume–
time curves) optimally reflects the clinical setting. In fact, our CNN captures the clinical decision process,
as it extracts visual features from a 32×32 image of MEFVC and considers ATS/ERS quantifiable criteria
in automating manoeuvre acceptability. Moreover, the conversion of raw flow–volume data to 32×32-pixel
matrices occurs algorithmically, without any intermediate step of saving image files (supplement S1).

A major drawback of our study included a lack of data on forced inspiration. An insufficient inspiration
can severely affect FVC, a fact that was not stressed in ATS/ERS 2005 spirometry guidelines. The 2019
update of ATS/ERS standardisation of spirometry has incorporated rules on the inspiratory manoeuvre
before and after forced expiration [3], and this will need to be included in future iterations of the
algorithm when forced inspiration data are available. Another potential drawback of this study was a lack
of diversity in our population. NHANES 2011–2012 was an epidemiological study and mostly contained
healthy individuals. Since the shape of MEFVC is affected by the presence of emphysema, restrictive
disease or extrathoracic obstruction, future validation studies in disease cohorts should incorporate this
aspect. Finally, we would also like to point out that a 32×32-pixel matrix is an inefficient way of
representing to input, as it is a sparse matrix (contains lot more ones than zeros). The past success of
CNN on handwritten character recognition, which also involved sparse input, inspired our modelling
choice [27]. While a CNN efficiently utilises a low-resolution image that is not adequate for a visual
inspection, human vision is still vastly superior when it comes to generalisation.

We are living in an era in which technology significantly influences medicine and medical applications.
Our study perfectly reflects that technological wave, which aims to improve quality of tests and care, and
therefore patient outcomes. Our technology emulates the experience of skilled spirometry readers into a
computer algorithm that could bring the necessary quality checks to all areas of spirometry use.
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