

The assessment of short- and long-term changes in lung function in cystic fibrosis using ¹²⁹Xe MRI

Laurie J. Smith ^(1,2), Alex Horsley ^(1,3), Jody Bray¹, Paul J.C. Hughes ⁽¹⁾, Alberto Biancardi¹, Graham Norquay¹, Martin Wildman⁴, Noreen West², Helen Marshall ⁽¹⁾ and Jim M. Wild¹

Affiliations: ¹POLARIS, Imaging Sciences, Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK. ²Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK. ³Respiratory Research Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK. ⁴Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.

Correspondence: Jim M. Wild, POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK. E-mail: j.m.wild@sheffield.ac.uk

@ERSpublications

 129 Xe-MRI in CF is highly repeatable. In patients with normal FEV₁, 129 Xe-MRI is also sensitive to detect changes in longitudinal lung function and should be highly informative in an era of CFTR modulators and increasingly preserved FEV₁ https://bit.ly/2C0D8Np

Cite this article as: Smith LJ, Horsley A, Bray J, *et al.* The assessment of short- and long-term changes in lung function in cystic fibrosis using ¹²⁹Xe MRI. *Eur Respir J* 2020; 56: 2000441 [https://doi.org/10.1183/13993003.00441-2020].

This single-page version can be shared freely online.

ABSTRACT

Introduction: Xenon-129 (¹²⁹Xe) ventilation magnetic resonance imaging (MRI) is sensitive to detect early cystic fibrosis (CF) lung disease and response to treatment. ¹²⁹Xe-MRI could play a significant role in clinical trials and patient management. Here we present data on the repeatability of imaging measurements and their sensitivity to longitudinal change.

Methods: 29 children and adults with CF and a range of disease severity were assessed twice, a median (interquartile range (IQR)) of 16.0 (14.4–19.5) months apart. Patients underwent ¹²⁹Xe-MRI, lung clearance index (LCI), body plethysmography and spirometry at both visits. 11 patients repeated ¹²⁹Xe-MRI in the same session to assess the within-visit repeatability. The ventilation defect percentage (VDP) was the primary metric calculated from ¹²⁹Xe-MRI.

Results: At baseline, mean±sD age was 23.0±11.1 years and forced expiratory volume in 1 s (FEV₁) z-score was -2.2 ± 2.0 . Median (IQR) VDP was 9.5 (3.4–31.6)% and LCI was 9.0 (7.7–13.7). Within- and inter-visit repeatability of VDP was high. At 16 months there was no single trend of ¹²⁹Xe-MRI disease progression. Visible ¹²⁹Xe-MRI ventilation changes were common, which reflected changes in VDP. Based on the within-visit repeatability, a significant short-term change in VDP is >±1.6%. For longer-term follow-up, changes in VDP of up to ±7.7% can be expected, or ±4.1% for patients with normal FEV₁. No patient had a significant change in FEV₁; however, 59% had change in VDP >±1.6%. In patients with normal FEV₁, there were significant changes in ventilation and in VDP.

Conclusions: ¹²⁹Xe-MRI is a highly effective method for assessing longitudinal lung disease in patients with CF. VDP has great potential as a sensitive clinical outcome measure of lung function and end-point for clinical trials.

Copyright ©ERS 2020