The assessment of short and long term changes in lung function in CF using ¹²⁹Xe MRI

Authors: Laurie J. Smith^{1,2}, Alex Horsley^{1,3}, Jody Bray¹, Paul J.C. Hughes¹, Alberto Biancardi¹, Graham Norquay¹, Martin Wildman⁴, Noreen West², Helen Marshall¹, Jim M. Wild¹

1, POLARIS, Imaging Sciences, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK

2, Sheffield Children's NHS Foundation Trust, Sheffield, UK

3, Respiratory Research Group, Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK

4, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK

Corresponding Author: Jim M. Wild. POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK. Telephone: + 44 (0)114 2159141. Email: j.m.wild@sheffield.ac.uk

Online Supplementary Material

Methods

¹²⁹Xe ventilation MRI was performed on a 1.5T GE HDX MRI scanner (GE Milwaukee, USA). Images were acquired at a lung volume of end-inspiratory tidal volume as previously described, using titrated inhaled volumes of test gas (1). The test gas comprised of ¹²⁹Xe and N₂. To achieve this endinspiratory lung volume whilst in the scanner, patients were coached to initially breathe tidally by a trained operator. Once a stable breathing pattern was observed the test bag of gas was administered when the patient was at a lung volume of functional residual capacity. The volume of the test bag was titrated based on the standing height of the patient, details of which can be found in Table 1 below. 129-enriched (86%) ¹²⁹Xe was hyperpolarised to ~30%.(2)

Patient Height	Total Bag Volume	¹²⁹ Xe and N ₂ Gas dose
160cm +	1.0 L	500 ml ¹²⁹ Xe + 500 ml N ₂
150-160cm	800 ml	450 ml ¹²⁹ Xe + 350 ml N ₂
140-150cm	650 ml	400 ml 129 Xe + 250 ml N ₂
130-140cm	500 ml	350 ml 129 Xe + 150 ml N ₂
120-130cm	400 ml	300 ml 129 Xe + 100 ml N ₂

Table 1 – Inhaled bag volumes and the gas doses for ¹²⁹Xe at each height range.

¹²⁹Xe ventilation MRI was performed using a transmit-receive vest coil (Clinical MR Solutions, Brookfield, USA) and a 3D ventilation imaging sequences were used as described previously (3). For ¹²⁹Xe acquisition: a bSSFP 3D sequence was used, with bandwidth = 16kHz, TE/TR = 2.2/6.7ms, flip angle = 10° .

In order to calculate the ventilation defect percentage (VDP) from ¹²⁹Xe images, a separate ¹H anatomical image was acquired in order to calculate the thoracic cavity volume. ¹H images were acquired with the same breathing sequence as for ¹²⁹Xe MRI, using a volume of air equivalent to the volume used for ¹²⁹Xe MRI. For ¹²⁹Xe, the ¹H images were acquired during a separate breath-hold immediately prior to the ¹²⁹Xe image. This then required an additional automated registration of the ¹H images to the ¹²⁹Xe images using MATLAB (Mathworks, Natick, MA) to get accurate alignment for image segmentation.

References

1. Smith LJ, Collier GJ, Marshall H, Hughes PJC, Biancardi AM, Wildman M, et al. Patterns of regional lung physiology in cystic fibrosis using ventilation magnetic resonance imaging and multiple-breath washout. European Respiratory Journal. 2018;52(5).

2. Norquay G, Collier GJ, Rao M, Stewart NJ, Wild JM. ^{129}Xe-Rb Spin-Exchange Optical Pumping with High Photon Efficiency. Phys Rev Lett. 2018;121(15):153201.

3. Stewart NJ, Chan HF, Hughes PJC, Horn FC, Norquay G, Rao M, et al. Comparison of (3) He and (129) Xe MRI for evaluation of lung microstructure and ventilation at 1.5T. J Magn Reson Imaging. 2018.

4. Wild JM, Ajraoui S, Deppe MH, Parnell SR, Marshall H, Parra-Robles J, et al. Synchronous acquisition of hyperpolarised 3He and 1H MR images of the lungs - maximising mutual anatomical and functional information. NMR Biomed. 2011;24(2):130-4.