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The human body contains 60000 miles of blood vessels, including at least 19 billion capillaries, so that
under physiological conditions cells are located no further than 100–200 μm from the nearest capillary. In
those, endothelial cells and pericytes seem to play a pivotal role in coronavirus disease 2019 (COVID-19)
by binding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to the angiotensin-converting
enzyme 2 (ACE2) [1, 2]. In the lung, the transmembrane ACE2 receptor is predominantly expressed in
endothelial cells, perivascular pericytes and type 2 cells [2, 3].

We recently showed that SARS-CoV-2 infection leads to angiocentric inflammation in COVID-19-induced
respiratory failure, with a greater number of ACE2-positive endothelial cells compared to uninfected
controls or to post mortem lung tissue from patients who succumbed to influenza A-related acute
respiratory distress syndrome (ARDS) [1]. Although the detection of SARS-CoV-2 in post mortem tissue
by transmission electron microscopy is a challenging task [4], replicated virus-like particles were observed
enveloped in endothelial cells [1, 5] and lymphatic cells [6], and also in type 2 and 1 pneumocytes [6, 7].
Increasing clinical evidence shows that endothelial dysfunction is a common denominator after
SARS-CoV-2 infection in the multi-organ complexity and severity of COVID-19 [3]. COVID-19-related
endothelial dysfunction is characterised by acute vascular inflammation and perivascular T-cell
recruitment leading to disruption of the alveolar–capillary barrier and increased permeability [1–3]. The
endothelial cells surrounded by T-lymphocytes show features of strong activation referred to as
“endothelialitis”, a process typically seen during rejection of solid organ transplants. The infection of
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endothelial cells by SARS-CoV-2 results in swelling and disruption of the endothelial cell barriers, an
anomalous microvascular architecture, and an endothelial dysfunction [1, 3]. These vascular injuries are
accompanied by thrombosis, vasoconstriction and distinct intussusceptive angiogenesis, a unique rapid
process of blood vessel neoformation by splitting a vessel in two lumens by an incorporation of circulating
angiogenic cells (figure 1a) [1, 3]. In the pulmonary vasculature from autopsies of COVID-19 patients, we
observed a distinct occurrence of intussusceptive angiogenesis not only in early SARS-CoV-2 infected
lungs, but also in lung tissue with an infection lasting more than 20 days. Beyond these findings in
COVID-19 post mortem lung tissue, we revealed distinctive features of compensatory angiogenesis by
intussusception in many other organs such as heart, liver, kidney, brain and lymphoreticular organs in
patients who succumbed to COVID-19. The chaotic vessel regulation of focally vasoconstricted and
progressively dilated vessel segments results in severe disturbances of physiological laminar flow. Two
major forms of thrombi have been reported so far in COVID-19 patients [8]. Pulmonary embolism in
larger pulmonary vessels probably based on deep vein thrombosis were seen in a minority of COVID-19
patients, whereas the vast majority demonstrated platelet aggregates obstructing the microvasculature and
peripheral vascularity caused by fibrin strands, activated platelets, deformed neutrophils and neutrophil
extracellular traps [8, 9]. Viral-associated thrombotic microangiopathies have been described in numerous
inflammatory cardiorespiratory diseases (e.g. influenza [10] or myocarditis [11]). We compared post
mortem lung tissues from patients who died from COVID-19 with severe ARDS and diffuse alveolar
damage due to influenza A (H1N1) infection. Thereby, we found nine times more microthrombi in
COVID-19 lungs compared to influenza A (H1N1) lungs [1]. The microangiopathy observed
in COVID-19 patients, specifically, the vasoconstriction and clotting in smaller blood vessels, results in
hypoxia, shunting and an increase of pulmonary vascular resistance [8]. Interestingly, COVID-19 does not
show characteristics of a “typical” ARDS [12]. The discrepancy between a general well-preserved lung
mechanics and the severity of hypoxaemia could be explained by a decreased capacity of vascular tone in
venules and the capillary plexus. Our molecular data on COVID-19 lung tissue gave evidence of a
significant upregulation of vasoconstrictive mediators such as prostaglandins (phospholipase A,
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FIGURE 1 a) Schematic of pulmonary endothelialitis, thrombosis, and intussusceptive angiogenesis in coronavirus disease 2019 (COVID-19).
SARS-CoV-2: severe acute respiratory syndrome coronavirus 2. b) Intussusceptive angiogenesis is a morphogenetic process which rapidly expands
the vascular plexus. c) Transmission electron micrograph of lung tissue of a deceased COVID-19 patient highlights the formation of an
intussusceptive pillar (red arrowheads) which spans the lumen of the vascular walls. rbc: red blood cells. d) A disrupted vascularity with distorted
vessels and intussusceptive pillars (blue arrowheads) is observed in COVID-19 lungs, as depicted as scanning electron micrograph of
microvascular corrosion casts of COVID-19 autopsies.

https://doi.org/10.1183/13993003.03147-2020 2

PULMONARY INFECTION | M. ACKERMANN ET AL.



leukotrienes) [1], as well as an increase of nitric oxide synthase (NOS). Nitric oxide is produced in
endothelial cells by the enzyme endothelial nitric oxide synthase (eNOS) or in monocytes and
macrophages by inducible nitric oxide synthase (iNOS). The rheologic properties of blood flow (laminar
versus turbulent) and vessel morphology determine the shear stress on the vascular wall [13]. In general, high
shear stress, as observed in physiological laminar flow, is considered angioprotective, promoting endothelial
cell survival, vasodilation and anticoagulation [14, 15]. Low shear stress, on the other hand, results in the
secretion of vasoconstrictors, platelet aggregation, coagulation and pathological reshaping of microvascular
architecture [15–17]. The pathological consequences of these blood flow dynamics have been described in
many diseases, such as atherosclerosis [18], inflammatory diseases [15, 17] and malignancies [16]. Our own
haemodynamic studies on inflammatory-related changes of the blood flow [13, 14, 17] revealed heterogeneity
in flow patterns, with dispersed flow velocities, occluded vessel segments and platelet aggregates associated
with upregulation of thrombotic agonists.

The structural adaption of the microvascular architecture, the transmigration of lymphocytes and the
“cytokine storm” observed in COVID-19 patients is a response to SARS-CoV-2-induced cellular damage.
Many cytokines appear to be involved in enhancing lymphocyte recruitment. Tumour necrosis factor α
(TNFα) is known to increase the adhesion of lymphocytes by activating the SDF-1/CXCR4 pathways. The
T-lymphocyte/ endothelial interaction likely contributes to the prolonged interstitial inflammation in
COVID-19. Activated T-cells attracted by chemotactic chemokines (e.g. CCL17, CCL8 or CCR1) [1]
preferentially adhere to activated endothelial cells [19, 20]. Despite an increase in inflammatory blood flow
and increased wall shear stress, transendothelial lymphocyte recruitment can occur in selected capillary
beds (liver and lung), post-capillary venules (most parenchymal organs), and even specialised vascular
segments that acquire structural modifications that reduce flow velocity and wall shear stress [21].
Therefore, the structure of the microcirculation is continuously adapting to metabolic demands and
immunosurveillance. The close association of inflammation and angiogenesis represents a pivotal pillar in
perpetuating inflammatory processes during wound healing and infections such as COVID-19. Inflamed
human endothelial cells and pericytes express high levels of toll-like receptors (TLRs) which are recognised
together with their intracellular adaptor protein MyD88 as sentinels of the innate immune system [22].
SARS-CoV and other coronaviruses may be recognised by TLRs and MyD88 [23, 24]. Stimulation of
endothelial TLRs and MyD88 results in a release of cytokines (e.g. interferon γ, TNFα, interleukin 1α,
granulocyte colony-stimulating factor), chemokines, leukocyte adhesion molecules (e.g. E-selectin,
intercellular adhesion molecule 1, vascular cell adhesion protein 1), procoagulation mediators (e.g. fibrin,
plasminogen activator inhibitor, von Willebrand factor), and proangiogenic factors (e.g. vascular
endothelial growth factor (VEGF), NOS or CD14 monocytes) [25].

“Intussusceptive” (non-sprouting) angiogenesis is a well-characterised morphogenetic process in cancer
[26], inflammatory diseases and tissue regeneration [27]. Distinct from intussusceptive angiogenesis,
sprouting angiogenesis is characterised by sprouts composed of endothelial cells. The endothelial sprouts
typically grow toward an angiogenic stimulus (such as VEGF-A) and add vessels to tissues devoid of blood
vessels. Intussusceptive angiogenesis is a rapid process of intravascular septation that produces two lumens
from a single vessel within minutes. The process appears to recruit bone-marrow derived mononuclear
cells, expanding and adapting capillary plexuses without requiring active proliferation of endothelial cells
(figure 1b) [28]. The newly formed “intussusceptive pillars” (figure 1c) are then permeated by pericytes
and myofibroblasts providing mechanical stabilisation of the transcapillary pillar core. We previously
showed that this formation of intussusceptive pillars is primarily located in dilated vascular segments with
low blood flow velocity and reduced wall shear stress [12, 13]. Recently, CXCL12/CXCR4 signalling has
been identified as an important molecular regulator of intussusceptive angiogenesis and hypoxia [29]: the
positive feedback loop between vascular shear stress, CXCL12 (SDF1) expression, hypoxia and the release
of eNOS has been identified as an adaptation of the vascular system to maintain blood flow responsive to
the demands of prolonged inflammation. Therefore, the pronounced release of eNOS cascade is a pivotal
physiological process to maintain blood flow into tissues with occluded vessels and to initiate tissue repair
by expanding the vascular architecture by intussusceptive angiogenesis. In our own studies, we observed
abundant intussusceptive angiogenesis in the disrupted pulmonary vascular architecture of patients who
died of COVID-19 (figure 1c and d), stated in numbers nearly three times higher than in influenza A
(H1N1) lungs. Furthermore, the expression of CXCL12 and CXCR4 was highly upregulated in these
COVID-19 lungs and was associated with dense T-cell infiltration. These findings are consistent with
inflammation-induced angiogenesis observed in other conditions, such as colitis [30, 31] and malignant
tumours [26].

In a recent morphomolecular study published in the European Respiratory Journal [32], we demonstrated
the presence and impact of microvascular alterations in fibrotic interstitial lung diseases. We observed a
higher frequency of intussusceptive features in the injury patterns of nonspecific interstitial pneumonia
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and alveolar fibroelastosis fibrotic lungs, whereas usual interstitial pneumonia lungs revealed compensatory
angiogenesis predominantly by sprout formation [32, 33]. In addition, intussusceptive angiogenesis was
observed in chronic pulmonary vascular diseases with variable degree of thrombosis, such as chronic
thromboembolic pulmonary hypertension [34], pulmonary capillary haemangiomatosis [35, 36], and
pulmonary veno-occlusive disease (table 1) [35]. Although the pathological mechanisms underlying
fibrotic remodelling in pulmonary thromboembolic occlusions are poorly understood, thrombofibrosis and
endothelial–mesenchymal transition seem to be promoted by hypoxia-induced activation of endothelial
cells, intussusceptive angiogenesis, activation of mesenchymal cells and immune cells [31–34]. There is a
compelling evidence that at least the progress and severity of progressive interstitial lung disease may be
influenced by coagulation and fibrinolytic capacities and vascular permeability [37–39], although the
therapeutic use of orally administered anticoagulants has been critically evaluated in idiopathic pulmonary
fibrosis patients [40]. Especially in the light of inestimable long-term complications in COVID-19, further
experimental and observational studies should investigate the contribution and the interplay between the
overwhelming angiocentric T-cell inflammation, thrombotic microangiopathy and the compensatory
flow-regulated intussusceptive angiogenesis in the increased morbidity and mortality of COVID-19.
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