JAK inhibitors in COVID-19: the need for vigilance regarding increased inherent thrombotic risk

Puja Mehta1,2, Coziana Ciurtin2, Marie Scully3, Marcel Levi4 and Rachel C. Chambers1

Affiliations: 1Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, London, UK. 2Dept of Rheumatology, University College London (UCL) Centre for Adolescent Rheumatology, London, UK. 3Dept of Haematology, University College London Hospital (UCLH), London, UK. 4Dept of Medicine, University College London Hospitals (UCLH), London, UK.

Correspondence: Rachel C. Chambers, Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London WC1E 6JF, UK. E-mail: r.chambers@ucl.ac.uk

@ERSpublications
JAK inhibitors have promising therapeutic potential in COVID-19 with dual anti-inflammatory and anti-viral effects. Vigilance to the potentially increased thrombotic risk associated with JAKi is recommended, given the hypercoagulability of COVID-19. https://bit.ly/2NQ15K5


To the Editor:

There is accumulating evidence that coronavirus disease 2019 (COVID-19) is a hypercoagulable state. Reports of thrombotic events and autopsy findings of pulmonary thrombotic microangiopathy in patients with COVID-19 are rising [1]. BOMPARD et al. [2] recently reported a cohort study of 137 patients with COVID-19 pneumonia, in which retrospective review of computed tomography pulmonary angiography scans demonstrated a cumulative incidence of pulmonary emboli (PE) of 24% overall and 50% in intensive care. Although it was initially thought that insidious venous thromboembolic events (VTE) were mainly confined to ventilated patients [3], we now understand thrombotic risk to be a wider problem in COVID-19. An overexuberant host inflammatory response in selected patients with severe COVID-19 may contribute to the high mortality. We recently recommended screening for virally driven hyperinflammation in COVID-19 and proposed that immunomodulation in this subgroup of patients may improve outcomes [4]. There are several ongoing, randomised controlled trials evaluating the therapeutic potential of janus kinase inhibitors (JAKi) in severe COVID-19 (table 1). JAKi have a purported advantage over other immunomodulatory strategies in COVID-19, as they may exert dual anti-inflammatory (blockade of multiple, pro-inflammatory cytokines simultaneously) and anti-viral effects (impeding cellular viral endocytosis [5, 6]) and have convenient oral administration, with relatively short half-lives. JAKi may interrupt the signalling of several pro-inflammatory cytokines implicated in the pathogenesis of hyperinflammation, including interleukin-6, which has been the focus of several clinical trials in COVID-19. JAKi may also inhibit the entry of severe acute respiratory syndrome coronavirus 2 virus into the alveolar type 2 alveolar epithelial cells; baricitinib (a JAK1/2 inhibitor) is a numb-associated kinase inhibitor, with a particularly high affinity for alveolar type 2 cell-associated protein kinase 1, a pivotal regulator of clathrin-mediated viral endocytosis [5]. We recommend vigilance to the potentially
increased thrombotic risk associated with JAKi, given the hypercoagulability of COVID-19 and our recent thromboprophylaxis recommendations for all hospitalised patients with COVID-19 [7].