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Online Data Supplement 

Supplementary methods 

Supplementary methods S1. CT imaging protocols for the COVID-19 dataset and 

CT-EGFR dataset 

COVID-19 dataset: This dataset was collected from six hospitals: Renmin 

Hospital of Wuhan University (IRB: WDRY2020-K088), Henan Provincial People’s 

Hospital (IRB: 202029), the First Affiliated Hospital of Anhui Medical University (IRB: 

PJ2020-02-10), Beijing Youan Hospital of Capital Medical University, Huangshi 

Central Hospital, and the First Hospital of China Medical University (IRB: 2020-215-

2). In the six involved hospitals, CT scans were performed using one of the following 

scanners: Philips Brilliance Big Bore, Philips Brilliance 16, GE Light speed VCT 4, GE 

Light speed Pro 16, GE Optima CT540, GE Optima CT660, GE Optima CT680, GE 

Discovery CT750 HD, Siemens Emotion 16, and Toshiba Aquilion. More than 80% of 

the CT images were acquired using GE scanners, and about 16% of the CT images were 

acquired from Philips scanners. For each CT scanner, we chose the images with the 

sharpest reconstruction kernel. For GE scanners, we chose the images reconstructed 

with LUNG kernel; for Philips scanners, we chose images constructed with YA or L 

kernel; for Siemens scanner, we used the B70 kernel; for Toshiba scanner, we chose 

the FC51 kernel. All the patients underwent spiral CT scans from the lung apex to base 

at suspended maximum inspiration. The scans were performed at tube voltage 120 kV, 

tube current 200~500 mAs, rotation time 0.4~0.7 s, pixel matrix 512 × 512. Most CT 

scans were reconstructed with a slice thickness ≤ 5 mm.  

CT-EGFR dataset: Patients in this dataset were collected from West China 

Hospital of Sichuan University. There were 4106 patients with lung cancer in this 
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dataset, including 1991 EGFR-wild type patients and 2115 EGFR-mutant patients. The 

CT scans were performed using one of the following scanners: Philips Brilliance Big 

Bore, and GE Discovery CT750 HD. All the patients underwent spiral CT scans from 

the lung apex to base at suspended maximum inspiration. The scans were performed at 

tube voltage 120 kV, tube current 200~500 mAs, rotation time 0.4~0.7 s, pixel matrix 

512 × 512. Most CT scans were reconstructed with a slice thickness of 5 mm with the 

same increment.  

 

Supplementary methods S2. Criteria of discharging hospital for patients with 

COVID-19 

The recovery and discharge criteria were: normal body temperature for greater 

than 3 days, and significantly improved respiratory symptoms, and significantly 

improved exudative lesions through radiological evaluation, and two consecutive 

negative nucleic acid detection with at least 24 hours apart. (National Health 

Commission of the People’s Republic of China. Diagnosis and treatment protocols of 

pneumonia caused by a novel coronavirus (trial version 6)) 

 

Supplementary methods S3. Mathematical description of the DL model 

The computational units in the DL model are defined as layers, which include 

convolution, activation, pooling and batch normalization. The details are explained as 

following. 

Convolution. Convolution is used to extract features from CT image. Different 

convolutional filters can extract different features to characterize the lung. Assuming 

matrix 𝐼 = (
𝐼11 𝐼12 𝐼13
𝐼21 𝐼22 𝐼23
𝐼31 𝐼32 𝐼33

) is the mathematical representation of the lung CT image, 
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and matrix 𝐾 = (
𝑘11 𝑘12
𝑘21 𝑘22

)  is the convolutional filter. Then, the output of the 

convolution layer is F = conv(I, K), where conv represents convolutional operation. 

This can be further understood as the following formula.  

𝐹 = 𝑐𝑜𝑛𝑣(𝐼, 𝐾)

= (
𝐼11 ∗ 𝑘11 + 𝐼12 ∗ 𝑘12+𝐼21 ∗ 𝑘21 + 𝐼22 ∗ 𝑘22 𝐼12 ∗ 𝑘11 + 𝐼13 ∗ 𝑘12+𝐼22 ∗ 𝑘21 + 𝐼23 ∗ 𝑘22
𝐼21 ∗ 𝑘11 + 𝐼22 ∗ 𝑘12+𝐼31 ∗ 𝑘21 + 𝐼32 ∗ 𝑘22 𝐼22 ∗ 𝑘11 + 𝐼23 ∗ 𝑘12+𝐼32 ∗ 𝑘21 + 𝐼33 ∗ 𝑘22

) 

The output F is called feature map. 

Activation. After the operation of convolution, the result (feature map) will be 

activated by an activation function to obtain non-linear features, here we adopt the 

“ReLU” function [1] 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥). When the input x is negative, the output 

of the activation function will be zero, and when the input is positive, the result will be 

equal to the input.  

Pooling. To select representative features that are strongly associated with COVID-

19, non-relevant and redundant features need to be eliminated. This is achieved by 

pooling operation. Assuming the feature map is 𝐹 = (

1 5 2 8
3 9 7 8
1 0 2 6
8 5 3 2

), whose size is 

4×4, and pooling window is 2×2 with stride 2. The pooling operation will divide the 

matrix F into four disjoint small matrixes of size 2×2, each maximum value of the small 

matrix will be extracted to form the result matrix 𝑃 = (
9 8
8 6

). 

Batch normalization. To accelerate the training process of the DL model, we use 

batch normalization [2] operation to normalize the feature maps from each 
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convolutional layer. This strategy avoids gradient vanishing during training, and 

therefore accelerates the learning process of the DL model. 

 

Supplementary methods S4. Details of the DenseNet121-FPN and the non-lung 

area suppression 

To segment lung automatically from chest CT images, we used FPN network 

with DenseNet121 as backbone. The DenseNet121 was pre-trained in ImageNet dataset 

with more than 1 million natural images. Afterwards, the DenseNet121-FPN was fine-

tuned using VESSEL12 dataset. In the VESSEL12 dataset, chest CT image and manual 

lung annotation of 20 subjects were provided. Specifically, we used every three 

adjacent CT slices to combine a three-channel image as input to the DenseNet121-FPN 

network. The code and pretrained weights of the DenseNet121-FPN was available in 

https://github.com/divamgupta/image-segmentation-keras. During testing phase, lung 

segmentation was performed slice-by-slice. 

In the non-lung area suppression operation, firstly, we sorted the intensities of 

the whole CT scan, and find the top 5% intensity value (defined as top_threshold). 

Image intensities larger than the top_threshold were limited to the top_threshold. 

Secondly, we calculated the mean (lungmean) and standard deviation (lungstd) of the 

intensities of lung tissues inside lung mask. Afterwards, we limited the intensity of 

tissues outside lung mask into the range [lungmean - 4lungstd, lungmean + 4 lungstd]. 

Through this operation, intensity of non-lung tissues is suppressed to a small range. 

This operation is important for DL, since DL tends to focus on locations with high 

intensity or high intensity gradient. Bones or muscles usually have high intensity and 

sharp edges (gradient), and may mislead the DL model. Consequently, this non-lung 

area suppression operation can increase the robustness of the DL system. 
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Supplementary methods S5. Training process of the COVID-19 Net 

Model training aims at optimizing the parameters of the DL model to build the 

relationship between CT image and COVID-19. The model training is an iterative 

process, which optimizes the model at each iteration until the model achieves the best 

predictive performance. At each iteration, we used cross entropy as cost function to 

measure the predictive performance of the DL model: 

L(𝑤) =
1

𝑁
∑ [𝑦𝑛𝑙𝑜𝑔𝑝𝑛 + 𝐶(1 − 𝑦𝑛)𝑙𝑜𝑔(1 − 𝑦𝑛)]

𝑁

𝑛=1
 

In this formula, w was the parameter of the model that needed to be trained; N was the 

training sample number; 𝑦𝑛  represented the true pneumonia type of patient (1 for 

COVID-19, 0 for other types of pneumonia); 𝑝𝑛  was the predicted COVID-19 

probability. Since the ratio of COVID-19 to other types of pneumonia is imbalanced in 

the training set, we used a class weight C=5 in this formula. If the model falsely predicts 

other types of pneumonia into COVID-19, the cost value will be 5 times larger than 

normal. This strategy makes the deep learning model pay more attention to predict other 

types of pneumonia correctly. If the cost function L(𝑤) was not minimum, we used 

SGD algorithm to update the parameters of the DL model and minimize the loss 

function. The learning rate of SGD was set to 0.005, and was reduced by 0.8 times when 

the loss stopped decreasing for 2 epochs. 

To let the COVID-19Net learn lung features from large dataset, we used CT-

EGFR dataset (4106 patients) to pre-train the network. Afterwards, the training set of 

the COVID-19 dataset was used to fine-tune the COVID-19Net.  
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Supplementary methods S6. Details of the DL-discovered suspicious lung area 

When the DL model is well trained, the network established thousands inference 

paths that work together for COVID-19 diagnosis. Given a lung-ROI, we calculated the 

gradient of the predicted COVID-19 probability with respect to the input image. This 

gradient told us how the predicted probability changes with respect to a small change 

in voxels in the lung-ROI. Hence, visualizing these gradients helped us to find the 

attention of the DL  model [3, 4]. 

 

Supplementary methods S7. Details of the DL feature pattern visualization 

We used convolutional filter visualization technique to acquire the feature 

patterns extracted by convolutional layers [3, 4]. For each convolutional filter in the DL 

model, we input an image initialized with random white noise to observe the filter 

response. If the filter response reaches a maximum, the input image reveals the feature 

pattern extracted by the convolutional filter; otherwise, a back-propagation algorithm 

was involved to change the input image until the filter response reaches a maximum. 

Through this convolutional filter visualization method, we can understand the feature 

patterns extracted by each convolutional filter in the DL model. 
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Supplementary table S1. Main parameters and structure of the COVID-19Net. 

layer size parameter 

Input 48×240×360  

Convolution 48×120×180@16 Filter = 16, kernel = 3×3×3, stride = 1×2×2 

Convolution 48×120×180@16 Filter = 16, kernel = 3×3×3, stride = 1×1×1 

DenseBlock1 48×120×180@16 Conv: filter=16, kernel=3, stride=1 

Conv: filter=16, kernel=3, stride=1, concatenate 

Conv: filter=16, kernel=3, stride=1 

Conv: filter=16, kernel=3, stride=1, concatenate 

Conv: filter=16, kernel=1, stride=1 

Max pooling 24×60×90@16 Window=2, stride=2 

DenseBlock2 24×60×90@24 Conv: filter=24, kernel=3, stride=1 

Conv: filter=24, kernel=3, stride=1, concatenate 

Conv: filter=24, kernel=3, stride=1 

Conv: filter=24, kernel=3, stride=1, concatenate 

Conv: filter=24, kernel=3, stride=1 

Conv: filter=24, kernel=3, stride=1, concatenate 

Conv: filter=24, kernel=1, stride=1 

Max pooling 12×30×45@24 Window=2, stride=2 

DenseBlock3 12×30×45@152 Conv: filter=32, kernel=3, stride=1 

Conv: filter=32, kernel=3, stride=1, concatenate 

Conv: filter=32, kernel=3, stride=1 

Conv: filter=32, kernel=3, stride=1, concatenate 

Conv: filter=32, kernel=3, stride=1 

Conv: filter=32, kernel=3, stride=1, concatenate 

Conv: filter=32, kernel=3, stride=1 

Conv: filter=32, kernel=3, stride=1, concatenate 

Max pooling 6×15×23@152 Window=2, stride=2 

DenseBlock4 6×15×23@216 Conv: filter=32, kernel=3, stride=1 

Conv: filter=32, kernel=3, stride=1, concatenate 

Conv: filter=32, kernel=3, stride=1 

Conv: filter=32, kernel=3, stride=1, concatenate 

Max pooling 6×8×12@216 Window=1×2×2, stride=1×2×2 

Convolution 6×8×12@64 Conv: filter=64, kernel=1, stride=1 

Global average 

pooling 

64  

Fully 

connection 

1 sigmoid 
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Supplementary table S2. Comparison between the DL systems without auxiliary 

training (random-DL system) and with auxiliary training (DL system). 

Methods datasets AUC Accuracy Sensitivity Specificity F1-score 

Random-DL 

system 

Training 0.91 (0.90, 0.91) 79.83% 77.50% 88.59% 85.85% 

Validation 1  0.78 (0.76, 0.80) 68.58% 50.98% 83.06% 59.43% 

Validation 2 0.67 (0.64, 0.70) 60.25% 43.48% 82.61% 55.56% 

DL system 
Training 0.90 (0.89-0.91) 81.24% 78.93% 89.93% 86.92% 

Validation 1 0.87 (0.86-0.89) 78.32% 80.39% 76.61% 77.00% 

 Validation 2 0.88 (0.86-0.90) 80.12% 79.35% 81.16% 82.02% 

Random-DL system is the DL system without auxiliary training in the CT-EGFR dataset. 

AUC is area under the receiver operating characteristic curve. 

Data in parentheses are the 95% confidence interval. 

 

Supplementary table S3. Selected prognostic features. 

Feature name Univariate HR p-value 

age 0.96 (0.95-0.98)  <0.001 

DL feature-22 0.04 (0.01-0.25) <0.001 

DL feature-44 0.04 (0.01-0.32) 0.002 
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Supplementary figure S1. Kaplan-Meier analysis of the prognostic performance of the DL system. 

Vertical lines in this figure represents censored data. 
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Supplementary figure S2. Segmentation results. Each row represents a patient. The first column 

is the 3-dimensional segmentation results, (a)-(d) are four image slices. Orange contour is the 

segmentation result by the DenseNet121-FPN model. Green rectangle is the lung-ROI. From case 

1 to case 4, the segmentation model generates good results. In case 5a-b and case 6a-c, the 

segmentation model misses some inflammatory tissues inside lung. However, the lung-ROI can 

always include all lung areas. 
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