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ABSTRACT Coronavirus disease 2019 (COVID-19) has spread globally, and medical resources become
insufficient in many regions. Fast diagnosis of COVID-19 and finding high-risk patients with worse
prognosis for early prevention and medical resource optimisation is important. Here, we proposed a fully
automatic deep learning system for COVID-19 diagnostic and prognostic analysis by routinely used
computed tomography.

We retrospectively collected 5372 patients with computed tomography images from seven cities or
provinces. Firstly, 4106 patients with computed tomography images were used to pre-train the deep
learning system, making it learn lung features. Following this, 1266 patients (924 with COVID-19 (471 had
follow-up for >5 days) and 342 with other pneumonia) from six cities or provinces were enrolled to train
and externally validate the performance of the deep learning system.

In the four external validation sets, the deep learning system achieved good performance in identifying
COVID-19 from other pneumonia (AUC 0.87 and 0.88, respectively) and viral pneumonia (AUC 0.86).
Moreover, the deep learning system succeeded to stratify patients into high- and low-risk groups whose
hospital-stay time had significant difference (p=0.013 and p=0.014, respectively). Without human
assistance, the deep learning system automatically focused on abnormal areas that showed consistent
characteristics with reported radiological findings.

Deep learning provides a convenient tool for fast screening of COVID-19 and identifying potential
high-risk patients, which may be helpful for medical resource optimisation and early prevention before
patients show severe symptoms.
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Introduction
In December 2019, the novel coronavirus disease 2019 (COVID-19) occurred in Wuhan, China and
became a global health emergency very fast with >170000 people infected [1–3]. Due to its high infection
rate, fast diagnosis and optimised medical resource assignment in epidemic areas are urgent. Accurate and
fast diagnosis of COVID-19 can help isolating infected patients slow the spread of this disease. However,
in epidemic areas insufficient medical resources have become a big challenge [4]. Therefore, finding
high-risk patients with worse prognosis for prior medical resources and special care is crucial in the
treatment of COVID-19.

Currently, reverse transcription (RT)-PCR is used as the gold truth for diagnosing COVID-19. However,
the limited sensitivity of RT-PCR and the shortage of testing kits in epidemic areas increase the screening
burden, and many infected people are thereby not isolated immediately [5, 6]. This accelerates the spread
of COVID-19. Conversely, due to the lack of medical resources, many infected patients cannot receive
immediate treatment. In this situation, finding high-risk patients with worse prognosis for prior treatment
and early prevention is important. Consequently, fast diagnosis and finding high-risk patients with worse
prognosis are very helpful for the control and management of COVID-19.

In recent studies, radiological findings demonstrated that computed tomography (CT) has great diagnostic and
prognostic value for COVID-19. For example, CT showed much higher sensitivity than RT-PCR in diagnosing
COVID-19 [5, 6]. For patients with COVID-19, bilateral lung lesions consisting of ground-glass opacities were
frequently observed in CT images [6–8]. Even in asymptomatic patients, abnormalities and changes were
observed in serial CT [9, 10]. As a common diagnostic tool, CT is easy and fast to acquire without adding
much cost. Building a sensitive diagnostic tool using CT imaging can accelerate the diagnostic process and is
complementary to RT-PCR. However, predicting personalised prognosis using CT imaging can identify the
potential high-risk patients who are more likely to become severe and need urgent medical resources.

Deep learning (DL) as an artificial intelligence method has shown promising results in assisting lung disease
analysis using CT images [11–15]. Benefiting from the strong feature learning ability, DL can mine features
that are related to clinical outcomes from CT images automatically. Features learned by DL models can
reflect high-dimensional abstract mappings which are difficult for humans to sense but are strongly
associated with clinical outcomes. In contrast to the published DL models [16, 17], we aim to provide a fully
automatic DL system for COVID-19 diagnostic and prognostic analysis. Without requiring any
human-assisted annotation, this novel DL system is fast and robust in clinical use. Moreover, we collected a
large multi-regional dataset for training and validating the proposed DL system, including 1266 patients (471
had follow-up) from six cities or provinces. Notably, different from many studies using transfer learning
from natural images. We collected a large auxiliary dataset including 4106 patients with chest CT images and
gene information to pre-train the DL system, aiming at making the DL system learn lung features that can
reflect the association between micro-level lung functional abnormalities and chest CT images.

Methods
Study design and participants
The institutional review board of the seven hospitals (supplementary methods S1) approved this
multi-regional retrospective study and waived the need to obtain informed consent from the patients. In
this study, we collected two datasets: COVID-19 dataset (n=1266) and CT-epidermal growth factor
receptor (EGFR) dataset (n=4106). In the COVID-19 dataset, 1266 patients were finally included who met
the following inclusion criteria: 1) RT-PCR confirmed COVID-19; 2) laboratory confirmed other types of
pneumonia before December 2019; 3) have non-contrast enhanced chest CT at diagnosis time. Since
RT-PCR has a relatively high false-negative rate, we collected other types of pneumonia before December
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2019 when COVID-19 did not show up to guarantee the diagnoses of typical pneumonia are correct. In
the COVID-19 dataset, patients from Wuhan city and Henan province formed the training set; patients
from Anhui province formed the external validation set 1; patients from Heilongjiang province formed the
validation set 2; patients from Beijing formed the validation set 3; and patients from Huangshi city formed
the validation set 4 (figure 1).

In the CT-EGFR dataset, 4106 patients with lung cancer were finally included who met the following
criteria: 1) EGFR gene sequencing was obtained; and 2) non-contrast enhanced chest CT data obtained
within 4 weeks before EGFR gene sequencing. The CT-EGFR dataset was used for auxiliary training of the
DL system, making the DL system learn lung features automatically. CT scanning parameters about the
COVID-19 and CT-EGFR datasets are available in supplementary methods S1.

For prognostic analysis, 471 patients with COVID-19 and regular follow-up for at least 5 days were used.
We defined the prognostic end event as the hospital stay time which was determined from the diagnosis of
COVID-19 to the time when the patient was discharged from hospital (supplementary methods S2).
A short hospital stay time corresponds to good prognosis, and a long hospital stay time means worse
prognosis. Patients with long hospital stay time might take longer time to recover and are defined as
high-risk patients in this study. These patients need prior medical resources and special care since they are
more likely to become severe.

Training

Wuhan and Henan n=4106

CT image

COVID-19: n=560

Other pneumonia: n=149

Follow-up >5 days: n=301

External validation 4

Huangshi n=117

CT image

All with COVID-19

follow-up >5 days

External validation 1

Anhui n=226

CT image

COVID-19: n=102

Other pneumonia: n=124

External validation 2

Heilongjiang n=161

CT image

COVID-19: n=92

Other pneumonia: n=69

External validation 3

Beijing n=53

CT image

All with COVID-19

follow-up >5 days
Auxiliary training

Sichuan n=4106

CT image

EGFR gene 

mutation status

Mutant: n=2115

Wild type: n=1991

FIGURE 1 Datasets used in this study. A total of 5372 patients with computed tomography (CT) images from seven cities or provinces were
enrolled in this study. The auxiliary training set included 4106 patients with lung cancer and epidermal growth factor receptor (EGFR) gene
mutation status information, and is used to pre-train the COVID-19Net to learn lung features from CT images. The training set includes 709
patients from Wuhan city and Henan province. The external validation set 1 (226 patients) from Anhui province, and the external validation set 2
(161 patients) from Heilongjiang province are used to assess the diagnostic performance of the deep learning (DL) system. The external validation
set 3 (53 patients with COVID-19) from Beijing, and the external validation set 4 (117 patients with COVID-19) from Huangshi city are used to
evaluate the prognostic performance of the DL system.
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The training set was used to train the proposed DL system; validation sets 1 and 2 were used to evaluate
the diagnostic performance of the DL system; and validation sets 3 and 4 were used for evaluating the
prognostic performance of the DL system.

The fully automatic DL system for COVID-19 diagnostic and prognostic analysis
The proposed DL system includes three parts: automatic lung segmentation, non-lung area suppression,
and COVID-19 diagnostic and prognostic analysis. In this DL system, two DL networks were involved:
DenseNet121-FPN for lung segmentation in chest CT image, and the proposed novel COVID-19Net for
COVID-19 diagnostic and prognostic analysis. DL is a family of hierarchical neural networks that aim at
learning the abstract mapping between raw data to the desired clinical outcome. The computational units
in the DL model are defined as layers and are integrated to simulate the inference process of the human
brain. The main computational formulas are convolution, pooling, activation and batch normalisation as
defined in supplementary methods S3.

Automatic lung segmentation
Routinely used chest CT images includes some non-lung areas (muscle, heart, etc.) and blank space
outside body. To focus on analysing lung area we used a fully automatic DL model (DenseNet121-FPN)
[18, 19] to segment lung areas in chest CT images. This model was pre-trained using ImageNet dataset,
and fine-tuned on the VESSEL12 dataset (supplementary methods S4) [20].

Through this automatic lung segmentation procedure, we acquired the lung mask on CT images. However,
some inflammatory tissues attaching to the lung wall may be falsely excluded by the DenseNet121-FPN
model. To increase the robustness of the DL system, we used the cubic bounding box of the segmented
lung mask to crop lung areas in CT images, and defined this cubic lung area as lung-region of interest
(ROI) (figure 2). In this lung-ROI, all inflammatory tissues and the whole lung were correctly reserved,
and most areas outside the lung were eliminated.

3D convolution

(kernel=3×3×3)

3D convolution

(kernel=1×1×1)

Max pooling

(window, stride=2)

Batch normalisation

Deep learning feature

Global average 

pooling

Dense connection

Non-lung areaAutomatic lung segmentation

COVID-19Net: COVID-19 prognostic and diagnostic analysis model

Use CT and gene data of 4106 lung cancer patients to pre-train the COVID-19Net
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FIGURE 2 Illustration of the proposed deep learning (DL) system. Using the chest computed tomography (CT) scanning of a patient, the DL system
predicts the probability the patient has COVID-19 and the prognosis of this patient directly without any human annotation. The DL system includes
three parts: automatic lung segmentation (DenseNet121-FPN), non-lung area suppression, and COVID-19 diagnostic and prognostic analysis
(COVID-19Net). To let the COVID-19Net learn lung features from the large dataset we used the auxiliary training process for pre-training, which
trained the DL network to predict epidermal growth factor receptor (EGFR) gene mutation status using CT images of 4106 patients. The dense
connection in this figure means each convolutional layer is connected to all of its previous convolutional layers inside the same dense block.
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Non-lung area suppression
After the above processing, some non-lung tissues or organs (e.g. spine and heart) inside the lung-ROI
may also exist. Consequently, we proposed a non-lung area suppression operation to suppress the
intensities of non-lung areas inside the lung-ROI (supplementary methods S4). Finally, the lung-ROI was
standardised by z-score normalisation, and resized to the size of 48×240×360 voxel for further process.

DL model for COVID-19 diagnosis and prognosis
After the non-lung area suppression operation, the standardised lung-ROI was sent to the COVID-19Net
for diagnostic and prognostic analysis. Figure 2 illustrates the topological structure of the proposed novel
COVID-19Net (table S1). This DL model used a DenseNet-like structure [18], consisting of four dense
blocks, where each dense block was multiple stacks of convolution, batch normalisation and ReLU
activation layers. Inside each dense block, we used dense connection to consider multi-level image
information. At the end of the last convolutional layer, we used global average pooling to generate the
64-dimensional DL features. Finally, the output neuron was fully connected to the DL features to predict
the probability the input patient had COVID-19.

To enable the COVID-19Net to learn discriminative features associated with COVID-19, a large training
set was needed. Consequently, we proposed a two-step transfer learning process. Firstly, we proposed an
auxiliary training process using the large CT-EGFR dataset (4106 patients) as illustrated in figure 2. In this
auxiliary training process, we trained the COVID-19Net to predict EGFR mutation status (EGFR-mutant
or EGFR wild-type) using the lung-ROI [11]. Benefitting from the large CT-EGFR dataset, the
COVID-19Net learned CT features that can reflect the associations between micro-level lung functional
abnormality and macro-level CT images.

In the second training process, we transferred the pre-trained COVID-19Net to the COVID-19 dataset to
specifically mine lung characteristics associated with COVID-19. After an iterative training process in the
COVID-19 dataset (supplementary methods S5), the COVID-19Net can predict the probability of the
input patient being infected with COVID-19; this probability was defined as DL score in this study.

To explore the prognostic value of the DL features, we extracted the 64-dimensional DL feature from the
COVID-19Net for prognostic analysis. Firstly, we combined the 64-dimensional DL feature and clinical
features (age, sex and comorbidity) to construct a combined feature vector. Afterwards, we used a stepwise
method to select prognostic features. These selected features were then used to build a multivariate Cox
proportional hazard model [21] to predict the risk of the patient needing a long hospital stay time to
recover.

Visualisation of lung features learnt by the DL system
Through the two-step transfer learning technique, the DL system learnt lung features from CT images of
4815 patients. To further understand the inference process of the DL system, we used a DL visualisation
algorithm to analyse features learnt by the COVID-19Net from two perspectives: 1) visualising the
DL-discovered suspicious lung area that contributes most to identifying COVID-19 for the DL system; 2)
visualising the feature patterns extracted by hierarchical convolutional layers in the COVID-19Net
(supplementary methods S6 and S7).

Statistical analysis
Area under the receiver operating characteristic (ROC) curve, accuracy, sensitivity, specificity, F1-score,
calibration curves and Hosmer-Lemeshow test were used to assess the performance of the DL system in
diagnosing COVID-19. Kaplan–Meier analysis and log-rank test were used to evaluate the performance of
the DL system for prognostic analysis. The implementation of the DL system used the Keras 2.3.1 toolkit
and Python 3.7 (https://github.com/wangshuocas/COVID-19).

Results
Clinical characteristics of patients in the COVID-19 dataset are presented in table 1. This dataset was
collected from six cities or provinces including Wuhan city in China.

Diagnostic performance of the DL system
Table 2 and figure 3 illustrated the diagnostic performance of the DL system. In the training set, the DL
system showed good diagnostic performance (AUC: 0.90, sensitivity: 78.93%, specificity: 89.93%). This
performance was further confirmed in the two external validation sets (AUC: 0.87 and 0.88; sensitivity:
80.39% and 79.35%; specificity: 76.61% and 81.16%, respectively). The DL score revealed a significant
difference between COVID-19 and other pneumonia groups in the three datasets (p<0.0001). The good
performance in the validation sets indicated that the DL system generalised well on diagnosing COVID-19
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of unseen new patients. Meanwhile, we illustrated the ROC curves of the DL system in the three datasets
in figure 3a, and the calibration curves of the DL system in the two validation sets in figure 3b. The good
calibration in figure 3b indicated that the DL system did not systematically under predict or over predict
COVID-19 probability because the Hosmer–Lemeshow test yielded a nonsignificant statistic to the perfect
model (p=0.133 and p=0.229, respectively, in the two validation sets). Benefiting from the auxiliary
training process in the large CT-EGFR dataset, the generalisation ability of the DL system improved largely
compared with the DL system without auxiliary training (table S2).

In other types of pneumonia, viral pneumonia has similar radiological characteristics to COVID-19, and
therefore is more difficult to identify. Consequently, we performed a stratified analysis in the validation set
2. Table 1 indicated that the DL system also achieved good results in distinguish COVID-19 to other viral
pneumonia (AUC=0.86).

Prognostic value of the DL features
In the COVID-19 dataset, 471 patients had follow-up for >5 days. Through the stepwise prognostic feature
selection, three features were selected (table S3). These selected prognostic features were fed into the

TABLE 1 Clinical characteristics of patients

Training set Validation 1 Validation 2 Validation 3 Validation 4

Subjects 709 226 161 53 117
City or province Wuhan city and Henan Anhui Heilongjiang Beijing Huangshi city
Type
COVID-19 560 102 92 53 117
Bacterial pneumonia 127 119 25 0 0
Mycoplasma pneumonia 11 5 15 0 0
Viral pneumonia 0 0 29 0 0
Fungal pneumonia 11 0 0 0 0

Sex
Male 337 131 108 25 60
Female 372 95 53 28 57

Age years 50.52±18.91 49.15±18.44 58.44±16.19 50.26±19.29 47.67±14.20
Comorbidity
Any 204 NA NA 16 27
Diabetes 45 2 12
Hypertension 120 10 12
Cerebrovascular disease 18 1 0
Cardiovascular disease 21 5 9
Malignancy 19 0 1
COPD 10 1 2
Pulmonary tuberculosis 6 1 0
Chronic kidney disease 10 0 2
Chronic liver disease 16 3 2

Follow-up >5 days 301 NA NA 53 117

Data are presented as n or mean±SD. COVID: coronavirus 2019: NA: not available.

TABLE 2 Diagnostic performance of the deep learning system

Training Validation 1 Validation 2 Validation 2-viral#

Subjects n 709 226 161 121
AUC 95% CI 0.90 (0.89–0.91) 0.87 (0.86–0.89) 0.88 (0.86–0.90) 0.86 (0.83–0.89)
Accuracy % 81.24 78.32 80.12 85.00
Sensitivity % 78.93 80.39 79.35 79.35
Specificity % 89.93 76.61 81.16 71.43
F1-score 86.92 77.00 82.02 90.11

AUC: area under the receiver operating characteristic curve. #: a stratified analysis using the patients with coronavirus 2019 and viral
pneumonia in validation set 2.
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multivariate Cox proportional hazard model to predict a hazard value for each patient. We used median
value of the hazards in the training set as a cut-off value to stratify patients into high- and low-risk
groups. This cut-off value was also applied to validation sets 3 and 4. Kaplan–Meier analysis in figure S1
demonstrated that patients in high- and low-risk groups had a significant difference in hospital stay time
in the three datasets (p<0.0001, p=0.013 and p=0.014, respectively, log-rank test). These results suggested
that the DL features have potential prognostic value for COVID-19.

Suspicious lung area discovered by the DL system
Through the DL visualisation algorithm [22, 23], we are able to visualise the lung area that draws most
attention to the DL system. These DL discovered suspicious lung areas usually demonstrated abnormal
characteristics consistent with radiologists’ findings. Figure 4 illustrated DL discovered suspicious lung
areas of eight patients with COVID-19. From this figure, we can see that although the input lung-ROI to
the DL system includes some non-lung tissues such as muscle and bones, the DL system can always focus
on areas inside the lung for prediction instead of being disturbed by other tissues.

Moreover, the DL discovered suspicious lung areas showed high overlap with the actual inflammatory areas.
Figure 4a–h shows that, although we did not involve any human annotation in the DL system, the DL
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FIGURE 3 Diagnostic performance of the deep learning (DL) system. a) Receiver operating characteristic
curves of the DL system in the training set and the two independent external validation sets. Validation 2-viral
is a stratified analysis using the patients with coronavirus 2019 and viral pneumonia in the validation set 2. b)
Calibration curves of the DL system in the two external validation sets. c) Area under the curve and
distribution of the training set and the two external validation sets.
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system focused on the ground-glass opacity area automatically for inference. This is consistent with
radiologists’ experiences that many COVID-19 patients illustrated ground-glass opacity features [6, 9]. In
figure 4i–p, the DL discovered suspicious lung areas distributed on bilateral lung, and mainly focused on
lesions with consolidation, ground-glass opacities, diffuse or mixture patterns. When comparing these DL
discovered suspicious lung areas with actual abnormal lung areas, we found a high overlap and consistency.

Although we did not use human annotation (e.g. human annotated ROI) to tell the DL system where to
watch, the DL system is capable of discovering the abnormal and important lung areas automatically. This
phenomenon could come from the advantage of using the large CT-EGFR dataset and the large
COVID-19 dataset for training.

DL feature visualisation
Since DL is an end-to-end prediction model that learns abstract mappings between lung CT images and
COVID-19 directly, it is helpful to explain the inference process of the DL system. The most important
component of the DL model is the convolutional filter. Therefore, we visualised the 3-dimensional feature
patterns extracted by hierarchical convolutional layers in figure 5. The shallow convolutional layer learnt
low-level simple features, such as spindle edges (figure 5a) and wave-like edges (figure 5b). A deeper
convolutional layer learnt more complex and detailed features (figure 5c). When going deeper, the feature
pattern became more abstract and lacked visual characteristics (figure 5d). However, these high-level
feature patterns are more related to COVID-19 information.

p)m)

l)j) k)

o)n)

i)

h)g)

a) b) c) d)

f)e)

FIGURE 4 Deep learning (DL) discovered suspicious lung area. a–p) Computed tomography (CT) images of eight patients with coronavirus 2019.
a–d and i–l) CT images of the patients (these CT images are processed by the DL system). e–h and m–p) Heat maps of the DL discovered
suspicious lung area. In the heat map, areas with bright red colour are more important than dark blue areas.
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At the end of the DL model, the outputs of convolutional filters were compressed into a 64-dimensional
vector, which was defined as a DL feature. In figure 5e, we reduced the 64-dimensional DL feature into
two-dimensional space to see the DL feature distribution in the two classes (COVID-19 versus other types
of pneumonia). This figure demonstrated that the two classes distributed separately in the DL feature
space, which means the DL features are discriminative to identify COVID-19 from other types of
pneumonia.

Discussion
In this study, we proposed a novel fully automatic DL system using raw chest CT image to help
COVID-19 diagnostic and prognostic analysis. To let the DL system mine lung features automatically
without involving any time-consuming human annotation, we used a two-step transfer learning strategy.
Firstly, we collected 4106 lung cancer patients with both CT image and EGFR gene sequencing. Through
training in this large CT-EGFR dataset, the DL system learned hierarchical lung features that can reflect
the associations between chest CT image and micro-level lung functional abnormality. Afterwards, we
collected a large multi-regional COVID-19 dataset (n=1266) from six cities or provinces to train and
validate the diagnostic and prognostic performance of the DL system.

The good diagnostic and prognostic performance of the DL system illustrates that DL could be helpful in
the epidemic control of COVID-19 without adding much cost. Given a suspected patient, CT scanning
can be acquired within minutes. Afterwards, this DL system can be applied to predict the probability the
patient has COVID-19. If the patient is diagnosed as COVID-19, the DL system also predicts their
prognostic situation simultaneously, which can be used to find potential high-risk patients who need
urgent medical resources and special care. More importantly, this DL system is fast and does not require
human-assisted image annotation, which increases its clinical value and becomes more robust. For a
typical chest CT scan of a patient, the DL system takes less than 10 s for prognostic and diagnostic
prediction.

During building and training the DL system, we did not involve any human annotation to tell the system
where the inflammatory area was. However, the DL system managed to automatically discover the
important features that are strongly associated with COVID-19. In figure 4, we visualised the DL
discovered suspicious lung areas that were used by the DL system for inference. These DL discovered
suspicious lung areas had high overlap with the actual inflammatory areas that are used by radiologists for
diagnosis. In previous studies, some radiological features such as ground-glass opacities, crazy-paving
pattern and bilateral involvement have been reported to be important for diagnosing CVOID-19 [7]. In
the DL discovered suspicious lung areas, we also observed these radiological features. This demonstrates
that the high-dimensional features mined by the DL system can probably reflect these reported
radiological finding.

Recently, deep learning methods with different processes and models were reported to diagnose COVID-19
using CT images. These methods can be classified into three types. 1) Using manually or automatically

a)

b)

c)

e)

COVID-19

Other types of pneumonia

d)

3D feature patterns

Distribution of patients in the 64- 

dimensional DL feature space

3D feature patterns

FIGURE 5 Deep learning (DL) feature visualisation. a–d) Four 3-dimensional (3D) convolutional filters from
different convolutional layers. e) Distribution of patients in the 64-dimensional DL feature space. For display
convenience, the 64-dimensional DL feature space is reduced to 2-dimensional by a principle component
analysis algorithm.
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segmented lesions for diagnosis. WANG et al. [16] used manually annotated lesions as ROI, and a modified
ResNet34 model combined with decision tree and AdaBoost classifiers was used to diagnose COVID-19. To
avoid time-consuming lesion annotation by radiologists, automatic lesion segmentation models [17, 24] were
used in further studies. Afterwards, 3-dimensional CNN models such as 3DResNet were used to diagnose
COVID-19 using the lesion images. 2) Using 2-dimensional lung image slices to train the DL model. Since
lesions can be distributed in many locations in lungs, and automatic lesion segmentation may not guarantee
very high precision. More studies used the whole lung image slices for analysis. In the study by SONG et al.
[25], a feature pyramid network using ResNet50 as the backbone was used to analyse 2-dimensional image
slices of the whole lung area. Similarly, JIN et al. [26] used DeepLabv1 and LI et al. [27] used U-Net to
segment lung from CT images, and then used the 2-dimensional ResNet model to analyse image slices of
lung area. 3) Using a 3-dimensional DL model to analyse whole lung in CT images. To consider
3-dimensional information of the whole lung, ZHENG et al. [28] used the 3DResNet model to analyse the
3-dimensional lung area in CT images.

Compared with these studies, our study has three main differences. 1) We used the 3-dimensional
bounding box of the whole lung as ROI instead of only using lesions or segmented lung fields. Since
lesion segmentation may not guarantee a very high accuracy, inaccurate lesion segmentation may cause
information loss. Compared with segmenting lung lesion, lung segmentation is easier, and analysing the
whole lung can mine more information. However, different with the methods using only the segmented
lung areas [25, 27], we used the 3-dimensional bounding box of lung as ROI. In figure S2, we illustrated
the lung segmentation results. In most situations, the lung segmentation method generated good results.
However, for some patients with severe symptoms and consolidation lesions, the performance of the lung
segmentation method may be affected. Consequently, we used the 3-dimensional bounding box of the
segmented lung mask as ROI, which ensures the lung-ROI covering the complete lung area. Combined
with the non-lung area suppression strategy, the lung-ROI can reserve complete lung area, and suppress
images outside lung area. 2) We used a large auxiliary dataset including chest CT images of 4106 patients
to pre-train the proposed COVID-19Net, making it learn lung features. Many existed studies used DL
models pre-trained in ImageNet dataset, this may increase the generalisation ability of the DL model.
However, natural images in the ImageNet dataset have large difference to chest CT images. Consequently,
using a chest CT dataset for auxiliary training (pre-training) enables the DL model learn features that are
more specific to chest CT images. 3) Most studies used a small dataset and randomly selected data for
validation. To assess the generalisation ability of the deep learning model, we used a large dataset and two
independent validation sets from different regions.

Despite the good performance of the DL system, this study has several limitations. Firstly, there are other
prognostic end events such as death or admission to an intensive care unit, and they were not considered
in this study. Secondly, the management of severe and mild COVID-19 are different, thereby, exploring
the prognosis of COVID-19 in these two groups separately should be helpful. However, CT images of
different slice thickness were included in this study. In the future, we will use a generative adversarial
network to convert CT images of different slice thickness into CT images with a unified slice thickness,
which may further improve the diagnostic performance of the DL system.
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