

Patterns and determinants of exhaled nitric oxide trajectories in schoolchildren over a 7-year period

Erika Garcia ¹, Yue Zhang², Edward B. Rappaport¹, Kiros Berhane¹, Patrick Muchmore¹, Philip E. Silkoff³, Noa Molshatzki¹, Frank D. Gilliland¹ and Sandrah P. Eckel¹

Affiliations: ¹Dept of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. ²Dept of Internal Medicine, University of Utah, Salt Lake City, UT, USA. ³Philadelphia, PA, USA.

Correspondence: Sandrah P. Eckel, USC Dept of Preventive Medicine, 2001 N. Soto Street, SSB 202B, MC-9234, Los Angeles, CA 90089, USA. E-mail: eckel@usc.edu

Longitudinal $F_{\text{ENO}_{50}}$ trajectories in healthy children aged 8–16 years displayed a similar upward trend in males and females until age 11.5, after which males had higher $F_{\text{ENO}_{50}}$. Males with higher starting BMI percentile had attenuated $F_{\text{ENO}_{50}}$ slopes with age. https://bit.ly/2UMb8mI

Cite this article as: Garcia E, Zhang Y, Rappaport EB, *et al.* Patterns and determinants of exhaled nitric oxide trajectories in schoolchildren over a 7-year period. *Eur Respir J* 2020; 56: 2000011 [https://doi.org/10.1183/13993003.00011-2020].

This single-page version can be shared freely online.

ABSTRACT Fractional exhaled nitric oxide ($F_{\text{ENO}_{50}}$), a marker of allergic airway inflammation, is used in respiratory research and asthma clinical care; however, its trajectory with increasing age during childhood has not been well characterised. We examined $F_{\text{ENO}_{50}}$ longitudinally during a period of important somatic growth to describe trajectories across childhood and adolescence in healthy participants and evaluate clinical factors as potential determinants of trajectories.

 $F_{\rm ENO_{50}}$ was collected at six visits over 8 years in a population-based cohort of 1791 schoolchildren without asthma (median age at entry 8.4 years). Smooth sex-specific $F_{\rm ENO_{50}}$ trajectories were estimated using generalised additive mixed models, with participant-level random effects. We evaluated whether sex-specific trajectories were influenced by race/ethnicity, body mass index (BMI) percentile, allergic rhinitis or puberty.

Different $F_{\rm ENO_{50}}$ patterns were observed by sex in later childhood and several factors were associated with either $F_{\rm ENO_{50}}$ level or change in $F_{\rm ENO_{50}}$ as participants aged. $F_{\rm ENO_{50}}$ -age trajectories were similar by sex until age ~11.5 years, after which males had greater $F_{\rm ENO_{50}}$ change than females. This divergence in $F_{\rm ENO_{50}}$ -age trajectories coincides with puberty. Males with higher starting BMI percentile had attenuated $F_{\rm ENO_{50}}$ -age slopes. Among males, $F_{\rm ENO_{50}}$ levels were lower in non-Hispanic white subjects. Among both sexes, participants with rhinitis had higher $F_{\rm ENO_{50}}$. $F_{\rm ENO_{50}}$ levels within individuals tracked over time; however, there was considerable variation in $F_{\rm ENO_{50}}$ patterns across participants.

 $F_{\text{ENO}_{50}}$ trajectories from longitudinal data provide evidence of sex differences coinciding with puberty, suggesting potential hormone link. Improved understanding of determinants of $F_{\text{ENO}_{50}}$ trajectories is needed to realise the potential for using individualised predicted $F_{\text{ENO}_{50}}$ trajectories.

Copyright ©ERS 2020