
COVID-19 and smoking: is nicotine the
hidden link?

To the Editor:

LEUNG et al. [1] have recently published, in the European Respiratory Journal, a paper on the expression of
angiotensin-converting enzyme II (ACE-2) in the small airway epithelia of smokers and COPD patients,
discussing its effects on the risk of severe coronavirus disease 2019 (COVID-19). The authors found an
increased expression of the ACE-2 gene in the airways of subjects with COPD and in current smokers.
Indeed, a recent systematic review reporting data on the smoking habits of patients infected with severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), concluded that smoking may be associated with
a negative progression of the disease and with the adverse outcome [2]. These conclusions were challenged
in a correspondence by CAI [3] on the basis that a reliable mechanism explaining this association was
missing. The need for these results to be supported by additional studies is quite clear, but we believe that
a robust mechanistic explanation exists. Nicotine has a known influence on the homeostasis of the renin–
angiotensin system (RAS) up-regulating the angiotensin-converting enzyme (ACE)/angiotensin (ANG)-II/
ANG II type 1 receptor axis, and down-regulating the compensatory ACE-2/ANG-(1–7)/Mas receptor axis,
contributing in turn to the development of cardiovascular and pulmonary diseases [4]. Different airway
cells, such as bronchial epithelial cells, type II alveolar epithelial cells and interstitial lung fibroblasts,
express nicotinic acetylcholine receptors (nAChR), specifically the α7subtype [5]. All these cells express
components of the RAS [4]. In addition, nicotine increases the expression and/or activity of ACE in the
lung [4], an increase which has been found also in the serum of smokers, and that required at least 20 min
to return to control level [4]. ACE-2 serves as a physiologically relevant cellular entry receptor for
SARS-CoV, for the human respiratory coronavirus NL63, and probably for SARS-CoV-2 [6]. ACE binds
the SARS-CoV-2 S protein, and through its tissutal expression mediates the localisation and the efficiency
of the infection [6]. Moreover, nicotine induces the epithelial–mesenchymal transition (EMT) [5, 7], a
mechanism sufficient to allow “normal” differentiated cells to acquire the stem cell-like characteristics and
properties. We planned experiments on human bronchial epithelial cells (HBEpC), obtained from Cell
Applications Inc. (www.cellapplications.com/product number 502K-05a). Cells were maintained as
adherent monolayer in complete bronchial/tracheal epithelial cell growth medium (www.cellapplications.
com/product) at 37°C in 95% air/5% CO2, seeded at an initial density of 7.5×104 cells·cm−2, and
sub-cultured with a 0.25% trypsin–1 mM EDTA solution (Sigma-Aldrich, Milan, Italy) when cultures
reached 80% confluence. HBEpC are derived from the surface epithelium of normal human bronchi
non-diseased (i.e. asthma, COPD or type 2 diabetes). The morphology is consistent with epithelial origin,
and is positive for epithelial cell marker cytokeratin 18. Semi-confluent HBEpC at fourth passage
(7.5×104 cells·cm−2) were treated: 1) for 1 h with zero or 1.0×10−7 M nicotine (Sigma-Aldrich, Milan,
Italy) dissolved in saline in complete medium; 2) with 1.0×10−6 M α-Bungarotoxin (α-BTX;
Sigma-Aldrich, Milan, Italy) dissolved in saline, in the continued presence of nicotine at zero or
1.0×10−7 M for 1 h; 3) treated continuously with nicotine for additional passages, 1 passage every 48 h for
a total of 16 passages. We showed, for the first time, that nicotine at 1×10−7 M (the concentration present
on the alveolar lining fluids after one cigarette is in the range 6×10−6 to 6×10−5 M [5]) is able to increase
ACE-2 (figure 1a) in HBEpC. Treatment with nicotine induces phospho-S6 ribosomal protein (Ser235/
236), Akt1, phospho-Akt (Ser473), phospho-Akt (Thr308) and phospho-p44/42 MAPK (Thr202/Tyr204)
(figure 1b). To verify the hypothesis that ACE-2 is induced by nicotine through α7-nAChR, HBEpC, at
fourth passage, in the exponential growth phase, plated at a density of 1×106 cells·mL−1, were incubated
with α7-nAChR siRNA (0.1 μg) diluted in 100 μL of siRNA transfection medium. Transfection was
performed as described by LI et al. [8], who transfected, successfully, HBE16 human airway epithelial cell
line (unaffected cells). A clone of transfected HBEpC that did not express α7-nAChR proteins, also after
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FIGURE 1 Effect of nicotine on human bronchial epithelial cells (HBEpC) or si-mRNA-α7-HBEpC. a) Angiotensin-converting enzyme II (ACE-2)
detection. ACE-2 was measured with human ACE-2 ELISA kit ab235649 (www.abcam.com/human-ace2-elisa-kit-ab235649.html) according to the
manufacturer’s instructions. Data are mean±SEM; p-vaule was evaluated using t-test. The green plots are the human ACE-2 standard. Experiments
were performed twice in triplicate. b) Induction of phospho-S6 ribosomal protein (Ser235/236), Akt1, phospho-Akt (Ser473), phospho-Akt (Thr308)
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treatment with nicotine (figure 1c), and is not able to induce phospho-S6 ribosomal protein (Ser235/236),
Akt1, phospho-Akt (Ser473), phospho-Akt (Thr308) and phospho-p44/42 MAPK (Thr202/Tyr204) after
nicotine treatment (figure 1d), was selected for further experiments. Nicotine did not induce ACE-2 in
this clone (si-mRNA-α7-HBEpC) (figure 1a). This observation supports the hypothesis that ACE-2
increase is specifically mediated by α7-nAChR. Moreover, when HBEpC were incubated simultaneously
with nicotine and α-BTX, an α7 nicotine antagonist [9], no induction of ACE-2 was observed (figure 1d).
Importantly, treatment with nicotine, α-BTX or with the combination is not cytotoxic (data not shown).
On these bases, we suggest that smoking may promote cellular uptake mechanisms of SARS-CoV-2
through α7-nAChR signalling. A possible α7-nAChR down-stream mechanism may be the induction of
phospho-Akt and phospho-p44/42 MAPK. This mechanism was hypothesised, partially, by OLDS and
KABBANI [10] on their schematic model explaining how nicotine exposure increases the risk of
SARS-CoV-2 entry into lung cells. α7-nAChR is present both in neuronal and non-neuronal cells (i.e.
lung, endothelial, lymphocyte); consequently, smoking may impact COVID-19 pathophysiology and
clinical outcome in several organ systems, including the brain.
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and phospho-p44/42 MAPK (Thr202/Tyr204) in HBEpC. Data were obtained using PathScan® cell growth Multi-target Sandwich ELISA kit n.7239
(Cell Signaling) PathScan® Cell Growth Multi-Target Sandwich ELISA Kit is a solid phase sandwich ELISA that combines the reagents necessary
to detect endogenous levels of S6 ribosomal protein, phospho-S6 ribosomal protein (Ser235/236), Akt1, phospho-Akt (Ser473), phospho-Akt
(Thr308) and phospho-p44/42 MAPK (Thr202/Tyr204). Data are mean±SEM; p-value was evaluated using t-test. Experiments were performed twice
in duplicate. c) α7-nAChR protein detection. Western blotting was performed as described previously [11]. Human α7-nAchR antibody NBP1-49348
was purchased from Novus Biologicals (www.novusbio.com). 1–2 si-mRNA-α7-HBEpC treated with zero (lane 1) or 1.0×10−7 M nicotine (lane 2) for
1 h. 3–4 HBEpC treated with zero (lane 3) or 1.0×10−7 M nicotine (lane 4) for 1 h. Experiments were performed twice. d) as in panel b, but treated
cells are si-mRNA-α7-HBEpC.
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COVID-19 and nicotine as a mediator of
ACE-2

From the authors:

We recently reported that current smokers and those with COPD had higher airway epithelial cell
expression of the angiotensin-converting enzyme II (ACE-2) viral entry receptor [1]. We thus read with
great interest the work of P. Russo and co-workers, which proposes a mechanism for this finding, namely
that this upregulation is mediated by nicotine exposure specifically through the α7 subtype of nicotine
acetylcholine receptors (α7-nAChR). While exposure to increasing concentrations of nicotine caused
epithelial cells to increase ACE-2 levels, subsequent gene silencing of α7-nAChR appeared to significantly
dampen this response. A secondary transcriptome sequencing analysis of our cohort (consisting of 42
subjects who underwent bronchoscopy for epithelial cell brushings [1]) reveals evidence in support of this
hypothesis. We found that airway epithelial cell expression of CHRNA7, encoding α7-nAChR, was
significantly correlated with the expression of ACE2 (Pearson r=0.54, p=2.31×10−8) (figure 1). There was
significantly higher CHRNA7 expression in those with COPD (2.75±0.73 versus 2.14±0.43 in those without
COPD; p=1.47×10−4), with a trend towards higher expression in current smokers compared to former and
never smokers (2.86±0.92 in current smokers, 2.35±0.57 in former smokers, and 2.27±0.45 in never
smokers; p=6.16×10−2). CHRNA7 was also negatively correlated with forced expiratory volume in 1 s
percent predicted (Pearson r=−0.37, p=2.83×10−4). Interestingly, CHRNA7 was positively if weakly
correlated with body mass index (Pearson r=0.14, p=6.31×10−3), raising the intriguing possibility that
nicotine receptor mediation of ACE-2 may also be related to why obese individuals have made up a
considerable proportion of coronavirus disease 2019 (COVID-19) cases [2].

Together, these data further help to characterise the connections between airway epithelial ACE-2, and
α7-nAChR, and the unique vulnerability of patients with COPD to severe COVID-19. α7-nAChR’s

FIGURE 1 Transcriptome profiles
generated through RNA-Seq of
airway epithelial cells demonstrated
a significant positive correlation
between ACE2 and CHRNA7
expression.
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widespread abundance in the human body, from neuronal tissue to immune cells to the lung and digestive
tract, and its various roles in diseases such as schizophrenia [3], Alzheimer’s disease [4] and Parkinson’s
disease [5] has meant that considerable work has already been done to target α7-nAChR as a therapeutic
modality. As an example, α7-nAChR antagonists for the purpose of smoking cessation have long been
proposed [6] and the idea of potentially repurposing these compounds for a pandemic with few
therapeutic options currently available is certainly appealing. Whether α7-nAChR-selective antagonists,
such as methyllycaconitine [7] and α-conotoxin [8], can meaningfully alter ACE-2 expression to prevent
severe acute respiratory syndrome coronavirus 2 entry into the airway epithelium seems the next logical
investigation in our furious pursuit for better therapeutics.
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