COVID-19 and smoking: is nicotine the hidden link?

To the Editor:

Lee et al. [1] have recently published, in the European Respiratory Journal, a paper on the expression of angiotensin-converting enzyme II (ACE-2) in the small airway epithelia of smokers and COPD patients, discussing its effects on the risk of severe coronavirus disease 2019 (COVID-19). The authors found an increased expression of the ACE-2 gene in the airways of subjects with COPD and in current smokers. Indeed, a recent systematic review reporting data on the smoking habits of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), concluded that smoking may be associated with a negative progression of the disease and with the adverse outcome [2]. These conclusions were challenged in a correspondence by Cai [3] on the basis that a reliable mechanism explaining this association was missing. The need for these results to be supported by additional studies is quite clear, but we believe that a robust mechanistic explanation exists. Nicotine has a known influence on the homeostasis of the renin–angiotensin system (RAS) up-regulating the angiotensin-converting enzyme (ACE)/angiotensin (ANG)-II/ANG II type 1 receptor axis, and down-regulating the compensatory ACE-2/ANG-(1−7)/Mas receptor axis, contributing in turn to the development of cardiovascular and pulmonary diseases [4].

Different airway cells, such as bronchial epithelial cells, type II alveolar epithelial cells and interstitial lung fibroblasts, express nicotinic acetylcholine receptors (nAChR), specifically the α7subtype [5]. All these cells express components of the RAS [4]. In addition, nicotine increases the expression and/or activity of ACE in the lung [4], an increase which has been found also in the serum of smokers, and that required at least 20 min to return to control level [4]. ACE-2 serves as a physiologically relevant cellular entry receptor for SARS-CoV, for the human respiratory coronavirus NL63, and probably for SARS-CoV-2 [6]. ACE binds the SARS-CoV-2 S protein, and through its tissutal expression mediates the localisation and the efficiency of the infection [6]. Moreover, nicotine induces the epithelial–mesenchymal transition (EMT) [5, 7], a mechanism sufficient to allow “normal” differentiated cells to acquire the stem cell-like characteristics and properties. We planned experiments on human bronchial epithelial cells (HBEpC), obtained from Cell Applications Inc. (www.cellapplications.com/product number 502K-05a). Cells were maintained as adherent monolayer in complete bronchial/tracheal epithelial cell growth medium (www.cellapplications.com/product) at 37°C in 95% air/5% CO2, seeded at an initial density of 7.5×10^4 cells·cm−2 and is positive for epithelial cell marker cytokeratin 18. Semi-confluent HBEpC at fourth passage (figure 1b) were treated: 1) for 1 h with zero or 1.0×10^−7 M nicotine (Sigma-Aldrich, Milan, Italy) dissolved in saline, in the continued presence of nicotine at zero or 1.0×10^−7 M for 1 h; 3) treated continuously with nicotine for additional passages, 1 passage every 48 h for a total of 16 passages. We showed, for the first time, that nicotine at 1×10^−7 M (the concentration present on the alveolar lining fluids after one cigarette is in the range 6×10^−6 to 6×10^−5 M [5]) is able to increase ACE-2 (figure 1a) in HBEpC. Treatment with nicotine induces phospho-S6 ribosomal protein (Ser236/238), Akt1, phospho-Akt (Ser473), phospho-Akt (Thr308) and phospho-p44/42 MAPK (Thr202/Tyr204) (figure 1b). To verify the hypothesis that ACE-2 is induced by nicotine through α7-nAChR, HBEpC, at fourth passage, in the exponential growth phase, plated at a density of 1×10^6 cells·mL−1, were incubated with α7-nAChR siRNA (0.1 μg) diluted in 100 μL of siRNA transfection medium. Transfection was performed as described by Li et al. [8], who transfected, successfully, HBE16 human airway epithelial cell line (unaffected cells). A clone of transfected HBEpC that did not express α7-nAChR proteins, also after

FIGURE 1 Effect of nicotine on human bronchial epithelial cells (HBEpC) or si-mRNA-α7-HBEpC. a) Angiotensin-converting enzyme II (ACE-2) detection. ACE-2 was measured with human ACE-2 ELISA kit ab235649 (www.abcam.com/human-ace2-elisa-kit-ab235649.html) according to the manufacturer’s instructions. Data are mean±SEM; p-value was evaluated using t-test. The green plots are the human ACE-2 standard. Experiments were performed twice in triplicate. b) Induction of phospho-S6 ribosomal protein (Ser235/236), Akt1, phospho-Akt (Ser473), phospho-Akt (Thr308)
and phospho-p44/42 MAPK [Thr202/Tyr204] in HBEpC. Data were obtained using PathScan® cell growth Multi-target Sandwich ELISA kit n.7239 (Cell Signaling) PathScan® Cell Growth Multi-target Sandwich ELISA Kit is a solid phase sandwich ELISA that combines the reagents necessary to detect endogenous levels of S6 ribosomal protein, phospho-S6 ribosomal protein [Ser235/236], Akt1, phospho-Akt [Ser473], phospho-Akt [Thr308] and phospho-p44/42 MAPK [Thr202/Tyr204]. Data are mean±SEM; p-value was evaluated using t-test. Experiments were performed twice in duplicate. c) α7-nAChR protein detection. Western blotting was performed as described previously [11]. Human α7-nAChR antibody NBP1-49348 was purchased from Novus Biologicals [www.novusbio.com]. 1–2 si-mRNA-α7-HBEpC treated with zero [lane 1] or 1.0×10^{-7} M nicotine [lane 2] for 1 h. 3–4 HBEpC treated with zero [lane 3] or 1.0×10^{-7} M nicotine [lane 4] for 1 h. Experiments were performed twice. d) as in panel b, but treated cells are si-mRNA-α7-HBEpC.

treatment with nicotine (figure 1c), and is not able to induce phospho-S6 ribosomal protein (Ser235/236), Akt1, phospho-Akt (Ser473), phospho-Akt (Thr308) and phospho-p44/42 MAPK (Thr202/Tyr204) after nicotine treatment (figure 1d), was selected for further experiments. Nicotine did not induce ACE-2 in this clone (si-mRNA-α7-HBEpC) (figure 1a). This observation supports the hypothesis that ACE-2 increase is specifically mediated by α7-nAChR. Moreover, when HBEpC were incubated simultaneously with nicotine and α-BTX, an α7 nicotine antagonist [9], no induction of ACE-2 was observed (figure 1d).

Importantly, treatment with nicotine, α-BTX or with the combination is not cytotoxic (data not shown). On these bases, we suggest that smoking may promote cellular uptake mechanisms of SARS-CoV-2 through α7-nAChR signalling. A possible α7-nAChR down-stream mechanism may be the induction of phospho-Akt and phospho-p44/42 MAPK. This mechanism was hypothesised, partially, by OLDS and KABBANI [10] on their schematic model explaining how nicotine exposure increases the risk of SARS-CoV-2 entry into lung cells. α7-nAChR is present both in neuronal and non-neuronal cells (i.e. lung, endothelial, lymphocyte); consequently, smoking may impact COVID-19 pathophysiology and clinical outcome in several organ systems, including the brain.

Patrizia Russo1,2, Stefano Bonassi1,2, Robertina Giacconi3, Marco Malavolta4, Carlo Tomino1 and Fabrizio Maggi5,6
1Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Rome, Italy. 2Dept of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy. 3Advanced Technology Center for Aging Research, Scientific Technological Area, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy. 4Scientific Direction, IRCSS San Raffaele Pisana, Rome, Italy. 5Dept of Translational Research, University of Pisa, Pisa, Italy. 6Virology Division, Pisa University Hospital, Pisa, Italy.

Correspondence: Patrizia Russo, Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Val Cannuta, 247, I-00166 Rome, Italy. E-mail: patrizia_russo@hotmail.it

Received: 10 April 2020 | Accepted after revision: 16 April 2020

Conflict of interest: None declared.

References

Copyright ©ERS 2020.

This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0.
COVID-19 and nicotine as a mediator of ACE-2

From the authors:

We recently reported that current smokers and those with COPD had higher airway epithelial cell expression of the angiotensin-converting enzyme II (ACE-2) viral entry receptor [1]. We thus read with great interest the work of P. Russo and co-workers, which proposes a mechanism for this finding, namely that this upregulation is mediated by nicotine exposure specifically through the α7 subtype of nicotine acetylcholine receptors (α7-nAChR). While exposure to increasing concentrations of nicotine caused epithelial cells to increase ACE-2 levels, subsequent gene silencing of α7-nAChR appeared to significantly dampen this response. A secondary transcriptome sequencing analysis of our cohort (consisting of 42 subjects who underwent bronchoscopy for epithelial cell brushings [1]) reveals evidence in support of this hypothesis. We found that airway epithelial cell expression of CHRNA7, encoding α7-nAChR, was significantly correlated with the expression of ACE2 (Pearson r = 0.54, p = 2.31×10^{-8}) (figure 1). There was significantly higher CHRNA7 expression in those with COPD (2.75±0.73 versus 2.14±0.43 in those without COPD; p = 1.47×10^{-4}), with a trend towards higher expression in current smokers compared to former and never smokers (2.86±0.92 in current smokers, 2.35±0.57 in former smokers, and 2.27±0.45 in never smokers; p = 6.16×10^{-2}). CHRNA7 was also negatively correlated with forced expiratory volume in 1 s percent predicted (Pearson r = -0.37, p = 2.83×10^{-4}). Interestingly, CHRNA7 was positively if weakly correlated with body mass index (Pearson r = 0.14, p = 6.31×10^{-3}), raising the intriguing possibility that nicotine receptor mediation of ACE-2 may also be related to why obese individuals have made up a considerable proportion of coronavirus disease 2019 (COVID-19) cases [2].

Together, these data further help to characterise the connections between airway epithelial ACE-2, and α7-nAChR, and the unique vulnerability of patients with COPD to severe COVID-19. α7-nAChR’s...
widespread abundance in the human body, from neuronal tissue to immune cells to the lung and digestive tract, and its various roles in diseases such as schizophrenia [3], Alzheimer’s disease [4] and Parkinson’s disease [5] has meant that considerable work has already been done to target α7-nAChR as a therapeutic modality. As an example, α7-nAChR antagonists for the purpose of smoking cessation have long been proposed [6] and the idea of potentially repurposing these compounds for a pandemic with few therapeutic options currently available is certainly appealing. Whether α7-nAChR-selective antagonists, such as methyllycaconitine [7] and α-conotoxin [8], can meaningfully alter ACE-2 expression to prevent severe acute respiratory syndrome coronavirus 2 entry into the airway epithelium seems the next logical investigation in our furious pursuit for better therapeutics.

Janice M. Leung1,2, Chen Xi Yang1 and Don D. Sin1,2
1Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada. 2Division of Respiratory Medicine, Dept of Medicine, St. Paul’s Hospital, Vancouver, BC, Canada.

Correspondence: Don D. Sin, Division of Respiratory Medicine, Dept of Medicine, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z1Y6, Canada. E-mail: Don.Sin@hli.ubc.ca

Received: 18 April 2020 | Accepted after revision: 20 April 2020

Conflict of interest: J.M. Leung has nothing to disclose. C.X. Yang has nothing to disclose. D.D. Sin reports grants from Merck, personal fees for advisory board work from Sanofi-Aventis and Regeneron, grants and personal fees for lectures from Boehringer Ingelheim and AstraZeneca, personal fees for lectures and advisory board work from Novartis, outside the submitted work.

References