
First heterozygous NOP10 mutation in
familial pulmonary fibrosis

To the Editor:

Germline telomere-related gene mutations are associated with familial pulmonary fibrosis and lead to
short telomere syndrome [1, 2]. Most of the short telomere syndrome-related genes, such as TERT, TERC,
DKC1, TINF2, NHP2 and NOP10, were identified in dyskeratosis congenita patients with early onset
mucocutaneous manifestations and/or bone marrow failure [3]. The telomerase complex includes TERT,
the TERC RNA and DKC1. NOP10, along with DKC1, NHP2 and GAR1, is essential for TERC stability
and telomere maintenance [4]. Homozygous NOP10 mutation (c.100C>T, p.Arg34Trp) has been reported
only once in a consanguineous family with autosomic recessive dyskeratosis congenita without pulmonary
fibrosis [5]. Moreover, the p.Arg34Trp NOP10 mutation caused telomere shortening in homozygous and
heterozygous carriers [5]. Here we provide evidence that a heterozygous NOP10 mutation (c.17A>G,p.
Tyr6Cys) identified in a large family co-segregates with adult-onset familial pulmonary fibrosis.

The proband (II.1), a 68-year-old non-smoker female, was diagnosed with pulmonary fibrosis at the age of
66 years (figure 1a and b). Two deceased, a brother (II.2) and sister (II.6), and one alive sister (II.7) were
also diagnosed with pulmonary fibrosis (figure 1c). Another brother (II.4) and his son (III.5) died from
leukaemia while one of the sons of the proband (III.2) had long-term leukopenia. The deceased father of
the proband (I.1) was diagnosed with non-alcoholic liver cirrhosis (figure 1a). Mucocutaneous
manifestations were not observed upon examination in this family.

We identified by whole exome sequencing in the proband (II.1) a heterozygous pathogenic missense
mutation in NOP10 (NM_ 018648) c.17A>G,p.Tyr6Cys according to international recommendations
(figure 1a) [6]. No other rare variants predicted to be deleterious were found in whole exome data from
the proband in the other genes linked to short telomere syndrome (TERT, TERC, DKC1, TINF2, RTEL1,
PARN, NAF1, ACD, NHP2, WRAP53, SHQ1 and ZCCHC8) [7–9]. The variation is absent in 140000
individuals from the gnomAD database. The mutated adenine is conserved at a genomic level (GERP=5).
The in silico tools Polyphen 2 and CADD predicted a deleterious impact of the amino acid change p.
Tyr6Cys with scores of 1 and 24, respectively, reflecting high conservation at a protein level. Flow
cytometry and FISH (flowFISH) revealed that telomere length of the proband were shorter than the first
percentile [6]. It was not possible to organise flowFISH analysis for all individuals of this family. Thus,
telomere length for the individuals II.1, II.7, III.1 and III.2 was also measured through telomeric restriction
fragment assay [9] at 7.4 kb, 6.3 kb, 8.5 kb and 8.6 kb, respectively. Telomere length for the individuals
III.1 and III.2 were found to be shorter relative to the mother’s telomere length [2]. The fact that
non-carrier (III.1) and carrier (III.2) brother were found to have the same range of telomere length could
be attributed to the “heritability” of telomere length and evocates epigenetic inheritance [10]. The
variation co-segregated with pulmonary fibrosis (II.1 II.7; and the obligate carrier II.6) and leukopenia
(III.2). Incomplete penetrance observed for the asymptomatic niece (III.8) carrier of the mutation is
frequently observed in short telomere syndrome at the age of 50 years (figure 1a) [2].

Analysis of the human NOP10 protein three-dimensional structure demonstrated that the mutated amino
acid Tyr6 is buried with the small, N-terminal globular, ribbon domain of NOP10, which is in close
contact with Dyskerin DKC1 (Cbf5 in the archaeal complex) (figure 1d). Hence it is likely that it plays a
critical role for the stability of the domain as well as for the integrity of the DKC1/NHP2/GAR1/NOP10
complex [11–14].
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In this family, the combination of familial pulmonary fibrosis, the extra-pulmonary manifestations,
including haematological and liver disease, the significant telomere shortening, and the genetic
anticipation (II.4: 61 years; III.4 onset at 26 years/II.1: 66 years; III.2: 43 years) strongly evokes a diagnosis
of telomeropathy [15]. This is supported by the identification of a monoallelic rare variation predicted to
be deleterious in the NOP10 telomere-related gene that co-segregates with disease. Collectively, these
results provide the first evidence that mono-allelic NOP10 mutation can predispose to short telomere
syndrome (familial pulmonary fibrosis, liver and haematological diseases).
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FIGURE 1 a) Three-generation pedigree of the proband. Numbers below individual symbols are age at death or study. NOP10 mutation status in
subjects for whom DNA was available for sequencing and pulmonary and extra-pulmonary phenotype is also depicted. (+/c.17A>G) discloses
obligate carrier state. In the insert, the presence of NOP10 mutation identified by whole exome sequencing was confirmed by Sanger sequencing.
The symbol +/+ discloses wild type and +/c.17A>G heterozygosity for the mutation. TL: telomere length by flowFISH. b) High-resolution computed
tomography (HRCT) image at the basal segments of the lower lobes of the proband (II.1) showing peripheral fine reticulation with a microcystic
pattern subpleurally. In the inner lung zones intralobular reticulation in association with thin wall traction bronchiectasis are depicted. All
features indicate the fibrotic nature of the process. c) HRCT of the chest at the level of the basal segments of lower lobes of the patient II.7
revealing definite reticulation subpleurally with areas of increased density resulting from coalescence of the reticular opacities and areas of
microatelectasis. Reticular changes are also seen more centrally distorting the shape of the vessels, while few areas of macrocystic (honeycomb)
changes are seen in contact with the mediastinal pleura. The lungs bilaterally are ill expanded (small volumes). d) Ribbon representation of the
model of human NOP10, within the frame of a whole H/ACA RNP complex (experimental three-dimensional structure from Pyroccoccus furiosus,
PDB 2EY4). A model of the three-dimensional structure of human NOP10 has been made considering, for its N-terminal region (aa 1–33), the
experimental three-dimensional structure of Saccharomyces cerevisiae Nop10 (solved in complex with Cbf5/Dkc1 and Gar1 (pdb 3U28 [11]) and,
for the C-terminal region (aa 34–65), the experimental 3D structure of Pyrococcus furiosus Nop10, folded in part into an alpha-helix when
contacting both Cbf5 and L7ae/Nhp2 (pdb 2EY4 [12]). The three-dimensional structure of human NOP10 could not be modelled as a whole
starting from the archaeal Nop10 three-dimensional structure, as the N-terminal sequences strikingly diverge between archaeal and eukaryotic
species, although still sharing a similar “ribbon” fold, organised like a beta barrel [11]. The model of the human NOP10 3D structure was then
superimposed with the frame of the whole H/ACA RNP structure, as observed for archaeal complexes (PDB 2EY4). This superimposition is
supported by the fact that the structure of the individual subunits, overall organisation and interfaces are similar between archaeal and yeast H/
ACA RNP complexes [11]. Tyr6 is buried with the small, N-terminal globular, ribbon domain of NOP10 and likely plays a critical for the stability of
this domain, in close contact with human Dyskerin DKC1 (Cbf5). In archaeal proteins, the corresponding position is occupied by one of the four
cysteine encapsulating a zinc ion within the ribbon domain [11]. The name of the human subunits of the H/ACA RNP complex are given within
brackets. Molecular graphics and analyses were performed using the UCSF Chimera package [13]. Models of the three-dimensional structure
were built using Modeller 9v15 [14], according to the alignment presented in LI et al. [11].
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