Familial pulmonary arterial hypertension by \textit{KDR} heterozygous loss of function

Mélanie Eyries1,2,13, David Montani3,4,5,13, Barbara Girerd3,4, Nicolas Favrot6, Marianne Riou7, Laurence Faivre8, Grégoire Manaud5, Frédéric Perros5, Stefan Gräf9,10,11, Nicholas W. Morrell9,12, Marc Humbert3,4,5 and Florent Soubrier1,2

Affiliations: 1Hôpital Pitié-Salpêtrière, Département de génétique, Assistance Publique-Hôpitaux de Paris, Paris, France. 2UMR_S1166-ICAN, Sorbonne Université, INSERM, Paris, France. 3Univ. Paris–Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France. 4Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France. 5UMR_S 999, Univ. Paris–Sud, INSERM, Hôpital Marie Lannelongue, Le Plessis Robinson, France. 6Service de Pneumologie et Soins Intensifs Respiratoires, Centre de référence constitutif des maladies pulmonaires rares de l’adulte, Centre de compétence de l’hypertension pulmonaire, CHU Dijon-Bourgogne, Dijon, France. 7Service de pneumologie, Nouvel hôpital civil, Strasbourg, France. 8Centre de génétique, FHU TRANSLAD, Institut GIMI et UMR INSERM 1231, CHU de Dijon et Université de Bourgogne, Dijon, France. 9NIHR Bioresource – Rare Diseases, Cambridge Biomedical Campus, Cambridge, UK. 10Dept of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. 11Dept of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. 12Dept of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Royal Papworth Hospitals, Cambridge, UK. 13Equally contributing authors.

Correspondence: Florent Soubrier, UMR_S 1166 ICAN, Paris 75634, France. E-mail: florent.soubrier@sorbonne-universite.fr

KDR mutations were identified in two families with a particular form of PAH characterised by low DLCOc and radiological evidence of parenchymal lung disease http://bit.ly/30npPPn

This single-page version can be shared freely online.

ABSTRACT Beyond the major gene BMPR2, several new genes predisposing to PAH have been identified during the last decade. Recently, preliminary evidence of the involvement of the \textit{KDR} gene was found in a large genetic association study.

We prospectively analysed the \textit{KDR} gene by targeted panel sequencing in a series of 311 PAH patients referred to a clinical molecular laboratory for genetic diagnosis of PAH.

Two index cases with severe PAH from two different families were found to carry a loss-of-function mutation in the \textit{KDR} gene. These two index cases were clinically characterised by low diffusing capacity for carbon monoxide adjusted for haemoglobin (DLCOc) and interstitial lung disease. In one family, segregation analysis revealed that variant carriers are either presenting with PAH associated with low DLCOc, or have only decreased DLCOc, whereas non-carrier relatives have normal DLCOc. In the second family, a single affected carrier was alive. His carrier mother was unaffected with normal DLCOc.

We provided genetic evidence for considering \textit{KDR} as a newly identified PAH-causing gene by describing the segregation of \textit{KDR} mutations with PAH in two families. In our study, \textit{KDR} mutations are associated with a particular form of PAH characterised by low DLCOc and radiological evidence of parenchymal lung disease including interstitial lung disease and emphysema.