Lipids and ketones dominate metabolism at the expense of glucose control in pulmonary arterial hypertension: a hyperglycaemic clamp and metabolomics study

Jacob T. Mey1,2, Adithya Hari2, Christopher L. Axelrod1,2,3, Ciarán E. Fealy2,4,5, Melissa L. Erickson1,2, John P. Kirwan1,2,5, Raed A. Dweik2,6 and Gustavo A. Heresi2,6

Affiliations: 1Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA. 2Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. 3Dept of Translational Services, Pennington Biomedical Research Center, Baton Rouge, LA, USA. 4Diabetes and Metabolism Research Group, Maastricht University, Maastricht, The Netherlands. 5Metabolic Translational Research Center, Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH, USA. 6Dept of Pulmonary Care and Critical Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA.

Correspondence: Gustavo A. Heresi, Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA. E-mail: heresig@ccf.org

ABSTRACT Individuals with idiopathic pulmonary arterial hypertension (PAH) display reduced oral glucose tolerance. This may involve defects in pancreatic function or insulin sensitivity but this hypothesis has not been tested; moreover, fasting nutrient metabolism remains poorly described in PAH. Thus, we aimed to characterise fasting nutrient metabolism and investigated the metabolic response to hyperglycaemia in PAH. 12 participants (six PAH, six controls) were administered a hyperglycaemic clamp, while 52 (21 PAH, 31 controls) underwent plasma metabolomic analysis. Glucose, insulin, C-peptide, free fatty acids and acylcarnitines were assessed from the clamp. Plasma metabolomics was conducted on fasting plasma samples. The clamp verified a reduced insulin response to hyperglycaemia in PAH (−53% versus control), but with similar pancreatic insulin secretion. Skeletal muscle insulin sensitivity was unexpectedly greater in PAH. Hepatic insulin extraction was elevated in PAH (+11% versus control). Plasma metabolomics identified 862 metabolites: 213 elevated, 145 reduced in PAH (p<0.05). In both clamp and metabolomic cohorts, lipid oxidation and ketones were elevated in PAH. Insulin sensitivity, fatty acids, acylcarnitines and ketones correlated with PAH severity, while hepatic extraction and fatty acid:ketone ratio correlated with longer six-min walk distance. Poor glucose control in PAH could not be explained by pancreatic β-cell function or skeletal muscle insulin sensitivity. Instead, elevated hepatic insulin extraction emerged as an underlying factor. In agreement, nutrient metabolism in PAH favours lipid and ketone metabolism at the expense of glucose control. Future research should investigate the therapeutic potential of reinforcing lipid and ketone metabolism on clinical outcomes in PAH.