Supplementary Appendix for

Mendelian randomization analysis of red cell distribution width in pulmonary arterial hypertension

Anna Ulrich et al.

Table of Contents

Supplementary Methods	2
RDW and PAH association	
Mendelian randomization; causal effect estimation using MR	3
Inverse-variance weighted method	3
Weighted median estimator	3
Quality control and imputation procedures of VUMC genotype data	5
Genetic risk score (GRS) derivation and calculation of variance explained (R ²) from individual-level data	
R ² calculation from GWAS summary-level data	7
Supplementary Table and Figure Legends	8
Supplementary Tables and Figures	10

Supplementary Methods RDW and PAH association

RDW values were natural log-transformed and for ease of interpretation z-score normalized to have a mean of zero and a standard deviation of one. The association between RDW levels and PAH was tested in a logistic regression framework adjusted for age and sex (Supplementary Table $\underline{S}1$). For PAH cases we used closest to diagnosis RDW measurements. For controls we retrieved the first available RDW measurement.

We excluded individuals from non-white ethnic backgrounds to avoid potential bias from ethnicity effects. Since RDW is known to be elevated in a number of diseases, we excluded all individuals with either of the following in their medical history: polycystic kidney disease, chronic kidney disease, liver disease and transfusion therapy received. Furthermore, children and adolescents under the age of 18 as well as individuals with extreme RDW values (below 10%, N=20 or above 30%, N=15) were not included in the analysis. Out of the 35 excluded for extreme RDW, 14 were cases from VUMC in the range of 43-55 and 20 were all below 10 from one of the NIHRBR centers. Both centers confirmed reporting errors for these samples (Supplementary Figure §1).

Mendelian randomization; causal effect estimation using MR

Alleles were aligned to correspond to an increase in RDW followed by the harmonization of the effects. The causal effect was estimated with the inverse variance weighted (IVW) and weighted median estimator (WM) methods as implemented in the MR-Base software (1).

Inverse-variance weighted method

We used the conventional inverse variance weighted (IVW) method for estimating the causal effect. The IVW method is efficient when all variants in the genetic instrument are valid instruments. Briefly, each variant in the genetic instrument provided a causal estimate calculated by simply dividing the variant's effect on PAH by the variant's effect on RDW (ratio of coefficients or Wald ratio). These individual causal estimates were then meta-analyzed in a fixed-effects model weighted by the reciprocal of the standard error of the variant association with PAH.

This is equivalent to regressing the variant-RDW estimates on the variant-PAH estimates with the above-mentioned weighting whilst forcing the regression line to pass through the origin.

The causal estimate from the IVW method (β_{IVW}) is:

$$\beta_{IVW} = \frac{\sum_{k=1}^{K} X_k Y_k \sigma_{Yk}^{-2}}{\sum_{k=1}^{K} X_k^2 \sigma_{Yk}^{-2}}$$

Where:

k is an index for each of the variants used in the two-sample MR analysis X is the effect estimate on the exposure (RDW) as reported in the RDW GWAS summary statistics Y is the effect estimate on the outcome (PAH) as reported in the PAH GWAS summary statistics

The standard error of the causal estimate is:

$$se(\beta_{IVW}) = \sqrt{\frac{1}{\sum_{k=1}^{K} X_k^2 \sigma_{Yk}^{-2}}}$$

Weighted median estimator

We used the WM estimator to allow for up to (but not including 50%) of the variants in our genetic instrument to be invalid instruments.

Analogously to the IVW method, a Wald ratio (see above) is calculated for each variant. These Wald ratios are then ordered and weighted by the same weights used in the IVW method (see above). Let wj be the weight of the jth ordered Wald ratio estimate.

$$s_j = \sum_{k=1}^j w_k$$

Where:

k is an index for each of the variants used in the two-sample MR analysis w is the weight of the variant

 s_j is the sum of weights up to and including the $j{\rm th}$ Wald ratio estimate

The weights are standardized, so that the sum of weights is 1. The WM estimator is the median of the empirical distribution of weighted Wald ratios. Each Wald ratio is the $100(s_j-\frac{w_j}{2})$ th percentile of this distribution.

Quality control and imputation procedures of VUMC genotype data

VUMC participants were genotyped in 6 batches (30,886 in total) using the Infinium Expanded Multi-Ethnic Global Array-8 (MEGA-ex) array (Illumina, San Diego, California, US).

Variant QC (pre-imputation): Variants were excluded if they had a low call rate (< 95%), deviated from the Hardy-Weinberg equilibrium ($P \le 0.00005$), were rare (minor allele frequency $\le 1\%$) or had more than two alleles.

Sample QC: Individuals with high proportions (> 5%) of missing genotype data, unresolved sex discrepancies (discordant phenotype-genotype sex information), heterozygosity outliers, self-reported and/or principal component-based ethnic outliers, intentional duplicates and related individuals (PI-HAT > 0.2) were excluded.

Imputation of non-genotyped variants: The filtered genotype array data was imputed to the Haplotype Reference Consortium panel using the free Sanger Imputation Service provided by the Wellcome Sanger Institute (2).

Imputed variants were further filtered for deviations from the Hardy-Weinberg equilibrium ($P \le 0.00005$), rare variants (minor allele frequency $\le 1\%$) which are often poorly imputed and other low-quality variants with an INFO score lower than 0.9.

Genetic risk score (GRS) derivation and calculation of variance explained (R²) from individual-level data

Weighted genetic risk scores (GRS) comprising the single nucleotide polymorphisms (SNPs) from the RDW genetic instrument were regressed onto the first RDW values which provided the coefficient of determination (R^2) as an estimate for the correlation between RDW and the RDW GRS in our population. The GRSs can be derived by summing the effect alleles multiplied by the effect size at each of the variants (3).

GRS were calculated using the software PRSice-2 (3). Genotypes for the 179 SNPs in the RDW GRS were extracted from the imputed VUMC controls dataset. The same inclusion criteria as for our observational study were applied. Out of the 15,889 VUMC controls included in the observational study, 14,964 had genetic data that passed standard variant and sample quality control.

The GRS for an individual is the summation of the effect (trait-increasing) alleles (0, 1 or 2) weighted by the effect size of the variant taken from the genome-wide significant summary statistics of the RDW GWAS (4). We used an additive model meaning that homozygotes for the effect allele had twice the increase in RDW levels as the heterozygotes. This was in line with the model used in the RDW GWAS.

The following models were used to assess the validity of the RDW GRS as a proxy for RDW levels:

Full model: RDW ~ GRS + sex + age + principal components (1st and 2nd) + batch (study specific)

Null model: sex + age + principal components (1st and 2nd) + batch (study specific)

The R^2 for the GRS alone is calculated by subtracting the R^2 of the model not containing the GRS (null model) from the R^2 of the full model.

The confidence intervals for the GRS R^2 were computed using the adjusted bootstrap percentile method as implemented in the R software package 'boot' (5) (number of replicates = 20,000).

R² calculation from GWAS summary-level data

R² was calculated for each independent variant based from the publicly available summary statistics of the RDW GWAS in the discovery and replication populations (4). These individual estimates were then summed to give the overall variance explained by the RDW instrument.

$$R^{2} = \sum_{k=1}^{K} \frac{Nsample_{k} + 1}{Nsample_{k}} \times \frac{Z_{k}^{2}}{Z_{k}^{2} + Nsample_{k}} - \frac{1}{Nsample_{k}}$$

Where:

k is an index for each of the variants used in the two-sample MR analysis Z is the Z-statistic as reported in the RDW GWAS summary statistics Nsample is the sample size as reported in the RDW GWAS summary statistics

The standard error for the R2 estimate was calculated as shown below:

$$SE_{R^2} = \sum_{k=1}^{K} \sqrt{\left(\frac{2}{Nsample_k}\right) \times \left(2 \times R_k^2 + \frac{1}{Nsample_k}\right)}$$

Supplementary Table and Figure Legends

Supplementary Table <u>S1</u> Characteristics of the study population used for estimating/assessing the association between RDW and PAH, stratified by sex. PAH – Pulmonary Arterial Hypertension, VUMC - Vanderbilt Institute for Clinical and Translational Research, NIHRBR - UK National Institute for Health Research BioResource, RDW – red cell distribution width.

Supplementary Table <u>\$2</u> Logistic regression model predicting PAH disease status. We report the results of the adjusted model in the paper.

Supplementary Table \$\sigma 3\$ Five variants selected from the RDW GWAS based on their effects on systemic iron status. This table presents the effect estimates of these variants on RDW as reported by Astle et al. on RDW (Effect estimate per RDW SD; Effect estimate p-value). *The effects of these variants for the same allele go in the opposite direction on serum iron as reported by the Genetics of Iron Status GWAS (6). Elevated RDW can reflect iron deficiency which presents with decreased serum iron levels. In the Genetics of Iron Status GWAS, the two HFE variants reached genome-wide significance (P< 5×10⁻⁸) for all four (serum iron, transferrin, transferrin saturation, ferritin) iron status biomarkers, TMPRSS6 reached it for all but transferrin, TFRC reached it for transferrin and transferrin saturation, while TFR2 reached it for iron and transferrin saturation.

Supplementary Table <u>S</u>4 Summary of the RDW GRS models. The null model corresponds to the linear regression model specified above without the GRS. The R2 of the null models are identical since the sample and the covariates are the same. P.value is the significance value of the model fit (F-test). Empirical p-values that account for multiple testing and overfitting were obtained through permutation tests (n=20,000).

Supplementary Figure <u>S1</u> Flow diagram of the exclusion steps in the UK centers and the Vanderbilt University Medical Centre (VUMC) of the two cohorts (UK PAH Cohort and VUMC) participating in the RDW and PAH association analysis as described in the Supplementary methods.

Supplementary Figure §2 Mendelian Randomization (MR) analyses of red cell distribution width (RDW) and pulmonary arterial hypertension (PAH). A two-sample design was used where effect estimates for the instrumental genetic variants were taken from two non-overlapping populations. RDW QTL and their effect estimates were taken from the largest-to-date population based RDW genetic association study (GWAS) (4). Effect estimates for the RDW QTL on PAH susceptibility were obtained from the largest-to-date PAH GWAS (6). The primary MR analysis included all 179 RDW QTL while the secondary MR analysis was restricted to five out of the 179 RDW QTL acting via iron status (Supplementary Table §3).

Supplementary Figure $\S 3$ Individual MR causal estimates (IVW) for the main MR analysis of association between RDW and development of PAH - using all available RDW SNPs - from the four contributing studies in PAH GWAS. PAH ORs per one standard unit increase in RDW (dot) with the corresponding lower and upper 95% confidence intervals (horizontal line). The result of the BHFPAH (IVW causal OR = 1.54, 95% CI = 1.06-2.23) did not survive the correction for multiple testing and was driven by the causal estimate of one variant (rs6883412). PHAAR: Pulmonary Hypertension Allele-Associated Risk (269 PAH cases, 1068 controls). PAHB: US National Biological Sample and Data Repository for Pulmonary Arterial Hypertension (694 PAH cases, 1560 controls). NIHRBR: UK National Institute for Health Research BioResource (847 PAH cases, 5048 controls). BHFPAH: British Heart Foundation Pulmonary Arterial Hypertension (275 PAH cases, 1983 controls). Meta-analyzed: overall results of PAH GWAS including all four studies.

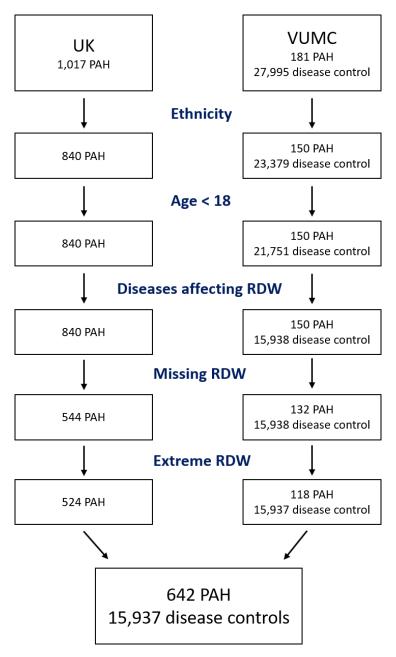
Supplementary Figure §4 Individual MR causal estimates (IVW) for the secondary MR analysis of association of RDW to development of PAH – using 5 SNPs related to systemic iron status - from the four contributing studies in PAH GWAS. PAH ORs per one standard unit increase in RDW (dot) with the corresponding lower and upper 95% Cis (horizontal line). PHAAR: Pulmonary Hypertension Allele-Associated Risk (269 PAH cases, 1068 controls). PAHB: US National Biological ample and Data Repository for Pulmonary Arterial Hypertension (694 PAH cases, 1560 controls). NIHRBR: UK National Institute for Health Research BioResource (847 PAH cases, 5048 controls). BHFPAH: British Heart Foundation Pulmonary Arterial Hypertension (275 PAH cases, 1983 controls). Meta-analyzed: overall results of PAH GWAS including all four studies.

Supplementary Tables and Figures

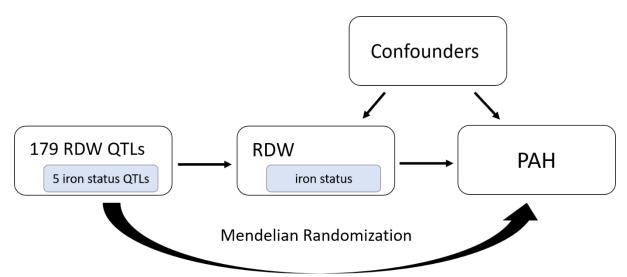
	PAH (118 VUMC; 524 NIHRBR)		Controls (15,889 VUMC)		
	Female (%)	Male (%)	Female (%)	Male (%)	
N	445 (69)	197 (31)	8,539 (54)	7,350 (46)	
RDW (mean/SD)	15.1/2.20	15.5/2.33	13.6/1.41	13.6/1.39	
Age (mean/SD)	52.4/17.6	58.2/16.2	54.3/16.1	58.1/14.7	

Supplementary Table <u>\$24</u> Characteristics of the study population used for estimating/assessing the association between RDW and PAH, stratified by sex. PAH – Pulmonary Arterial Hypertension, VUMC - Vanderbilt University Medical Centre, NIHRBR - UK National Institute for Health Research BioResource, RDW – red cell distribution width.

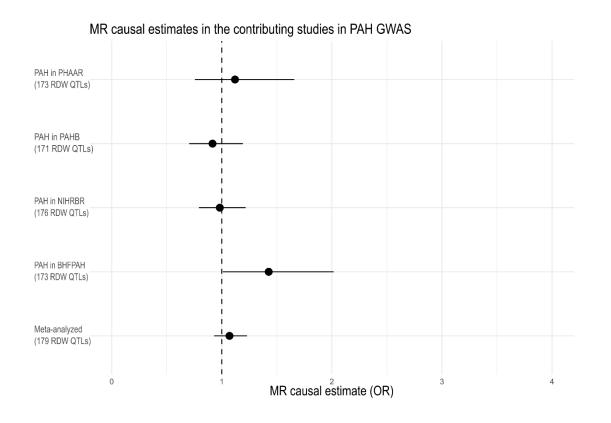
Variable	Una	djusted	Adjusted				
	OR	95% CI	OR	95% CI			
RDW (SD)	1.85	1.75 – 1.94	1.90	1.80 – 2.01			
Age	-	-	0.98	0.98 – 0.99			
Sex (base=female)	-	-	0.54	0.45 – 0.64			


Supplementary Table <u>S</u>2 Logistic regression model predicting PAH disease status. We report the results of the adjusted model in the paper.

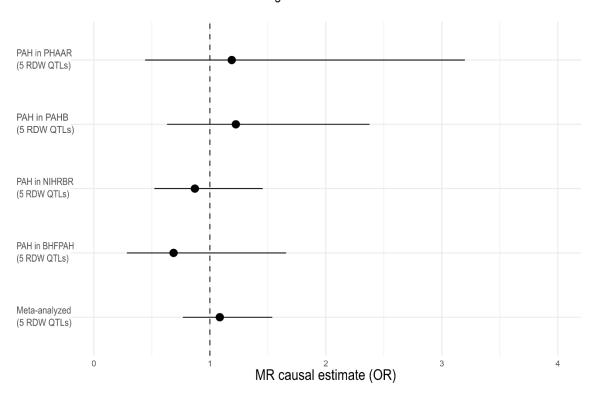
Variant information			RI	DW GWAS	Genetics of Iron Status GWAS									
variant information				Д	astle et al.	Benyamin et al.								
Gene	Lead variant	Effect	Allele	beta	P - value	Proxy variant	beta	P – value	beta	P – value	beta	P – value	beta	P – value
	ID	Allele	Frequency	RDW		ID*	iron	iron	ferritin	ferritin	TSAT	TSAT	TF	TF
			in UKB and											
			INTERVAL											
HFE	rs144861591	С	0.92	0.21	6.50 x 10 ⁻²¹⁶	rs1800562	-0.37	4.0 x 10 ⁻⁷⁷	-0.21	1.4 x 10 ⁻²⁹	-0.58	1.5 x 10 ⁻¹⁷⁸	0.55	1.3 x 10 ⁻¹⁵³
TMPRSS6	rs855791	Α	0.44	0.13	9.79 x 10 ⁻²⁷¹	-	-0.19	4.3 x 10 ⁻⁷⁷	-0.05	5.8 x 10 ⁻⁸	-0.19	3.5 x 10 ⁻⁸⁰	0.04	1.3 x 10 ⁻⁴
HFE	rs198851	G	0.85	0.13	2.55 x 10 ⁻¹⁶¹	-	-0.19	1.6 x 10 ⁻⁴⁰	-0.06	3.6 x 10 ⁻⁶	-0.23	4.7 x 10 ⁻⁵⁹	0.12	3.0 x 10 ⁻¹⁷
TFRC	rs7619708	С	0.24	0.07	4.35 x 10 ⁻⁶⁴	rs6583288	0.03	1.2 x 10 ⁻²	0.004	7.3 x 10 ⁻¹	0.05	3.8 x 10 ⁻⁶	-0.06	3.8 X 10 ⁻⁸
TFR2	rs9801017	G	0.37	0.05	9.40 x 10 ⁻³⁷	rs7385804	-0.06	7.2 x 10 ⁻⁸	-0.02	2.5 x 10 ⁻²	-0.05	1.8 x 10 ⁻⁷	0.01	4.0 X 10 ⁻¹


Supplementary Table $\underline{S}3$ Five variants selected from the RDW GWAS based on their effects on systemic iron status. This table presents the effect estimates of these variants on RDW as reported by Astle et al. on RDW (Effect estimate per RDW SD; Effect estimate p-value). Elevated RDW can reflect iron deficiency which presents with decreased serum iron levels. In the Genetics of Iron Status GWAS, the two HFE variants reached genome-wide significance ($P < 5 \times 10^{-8}$) for all four (serum iron, transferrin, transferrin saturation, ferritin) iron status biomarkers, TMPRSS6 reached it for all but transferrin, TFRC reached it for transferrin and transferrin saturation, while TFR2 reached it for iron and transferrin saturation. The betas for RDW and the iron biomarkers from Benyamin et al. are reported in standard units. RDW = red cell distribution width; TSAT = transferrin saturation; TF = transferrin. *Where the lead RDW variant for the locus was not available in the Genetics of Iron Status GWAS we listed the results of a suitable proxy variant in strong linkage disequilibrium ($r^2 \ge 0.8$) with the RDW lead variant.

RDW GRS	GRS R ²	Null R ²	P value	Empirical P value
179 RDW QTLs	0.0264	0.054	2.4 x 10 ⁻⁹⁴	5.0 x 10 ⁻⁵
5 RDW QTLs	0.0065	0.054	3.3 x 10 ⁻²⁴	5.0 x 10 ⁻⁵


Supplementary Table $\underline{S}4$ Summary of the RDW GRS models. The null model corresponds to the linear regression model without the GRS. The R^2 of the null models are identical since the sample and the covariates are the same. P value is the significance value of the model fit (F-test). Empirical p-values that account for multiple testing and overfitting were obtained through permutation tests (n=20,000).

Supplementary Figure $\underline{S1}$ Flow diagram of the exclusion steps in the UK centers and the Vanderbilt University Medical Centre (VUMC) participating in the RDW and PAH association analysis as described in the Supplementary methods.


Supplementary Figure <u>S</u>2 Mendelian Randomization (MR) analyses of red cell distribution width (RDW) and pulmonary arterial hypertension (PAH). A two-sample design was used where effect estimates for the instrumental genetic variants were taken from two non-overlapping populations. RDW QTL and their effect estimates were taken from the largest-to-date population based RDW genetic association study (GWAS) (4). Effect estimates for the RDW QTL on PAH susceptibility were obtained from the largest-to-date PAH GWAS (7). The primary MR analysis included all 179 RDW QTL while the secondary MR analysis was restricted to five out of the 179 RDW QTL acting via iron status (Supplementary Table <u>S</u>3).

Supplementary Figure $\underline{S3}$ Individual inverse variance weighted MR causal estimates for the main MR analysis of association between RDW and development of PAH - using all available RDW QTLs including suitable proxy variants with a minimum r^2 of 0.8 in each study - from the four contributing

studies in PAH GWAS. PAH ORs per one standard unit increase in RDW (dot) with the corresponding lower and upper 95% confidence intervals (horizontal line). The result of the BHFPAH (OR causal = 1.43, 95% CI = 1.01 – 2.02) did not survive the correction for multiple testing and was driven by the causal estimate of one variant (rs6883412). PHAAR: Pulmonary Hypertension Allele-Associated Risk (269 PAH cases, 1068 controls). PAHB: US National Biological Sample and Data Repository for Pulmonary Arterial Hypertension (694 PAH cases, 1560 controls). NIHRBR: UK National Institute for Health Research BioResource (847 PAH cases, 5048 controls). BHFPAH: British Heart Foundation Pulmonary Arterial Hypertension (275 PAH cases, 1983 controls). Meta-analyzed: overall results of PAH GWAS including all four studies.

MR causal estimates in the contributing studies in PAH GWAS

Supplementary Figure <u>S</u>4 Individual MR causal estimates (IVW) for the secondary MR analysis of association of RDW to development of PAH – using 5 RDW QTLs related to systemic iron status - from the four contributing studies in PAH GWAS. PAH ORs per one standard unit increase in RDW (dot) with the corresponding lower and upper 95% confidence intervals (horizontal line). PHAAR: Pulmonary Hypertension Allele-Associated Risk (269 PAH cases, 1068 controls). PAHB: US National Biological Sample and Data Repository for Pulmonary Arterial Hypertension (694 PAH cases, 1560 controls). NIHRBR: UK National Institute for Health Research BioResource (847 PAH cases, 5048 controls). BHFPAH: British Heart Foundation Pulmonary Arterial Hypertension (275 PAH cases, 1983 controls). Meta-analyzed: overall results of PAH GWAS including all four studies.

References

- 1. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408.
- 2. the Haplotype Reference C, McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics. 2016;48:1279.
- 3. Euesden J, Lewis CM, O'Reilly PF. PRSice: Polygenic Risk Score software. Bioinformatics. 2015;31(9):1466-8.
- 4. Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, et al. The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell. 2016;167(5):1415-29 e19.
- 5. Canty A, Ripley B. boot: Bootstrap R (S-Plus) Functions. R package version 1.3-23. ed2019.
- 6. Benyamin B, Esko T, Ried JS, Radhakrishnan A, Vermeulen SH, Traglia M, et al. Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis. Nat Commun. 2014;5:4926.
- 7. Rhodes CJ, Batai K, Bleda M, Haimel M, Southgate L, Germain M, et al. Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. The Lancet Respiratory Medicine. 2018.

NIHR BioResource Collaborators

NIHR BioResource – Rare Disease Consortium¹, Julian Adlard², Munaza Ahmed³, Tim Aitman^{4,5}, Hana Alachkar⁶, David Allsup⁷, Jeff Almeida-King⁸, Philip Ancliff⁹, Richard Antrobus¹⁰, Ruth Armstrong^{11,12,13}, Gavin Arno^{14,15}, Sofie Ashford^{1,16}, William Astle^{1,16,17}, Anthony Attwood^{1,16}, Chris Babbs^{18,19}, Tamam Bakchoul²⁰, Tadbir Bariana^{21,22}, Julian Barwell^{23,24}, David Bennett²⁵, David Bentley²⁶, Agnieszka Bierzynska²⁷, Tina Biss²⁸, Marta Bleda²⁹, Harm Bogaard³⁰, Christian Bourne²⁶, Sara Boyce³¹, John Bradley¹, Gerome Breen^{32,33}, Paul Brennan^{34,35}, Carole Brewer³⁶, Matthew Brown^{1,16}, Michael Browning³⁷, Rachel Buchan^{38,39}, Matthew Buckland⁴⁰, Teofila Bueser^{41,42,43}, Siobhan Burns⁴⁰, Oliver Burren²⁹, Paul Calleja⁴⁴, Gerald Carr-White⁴², Keren Carss^{1,16}, Ruth Casey^{11,12,13}, Mark Caulfield⁴⁵, John Chambers^{46,47}, Jennifer Chambers^{48,49}, Floria Cheng⁴⁹, Patrick F Chinnery^{1,50,51}, Martin Christian⁵², Colin Church⁵³, Naomi Clements Brod^{1,16}, Gerry Coghlan⁴⁰, Elizabeth Colby²⁷, Trevor Cole⁵⁴, Janine Collins⁵⁵, Peter Collins⁵⁶, Camilla Colombo²⁶, Robin Condliffe⁵⁷, Stuart Cook^{38,58,59,60}, Terry Cook⁶¹, Nichola Cooper⁶², Paul Corris^{63,64}, Abigail Crisp-Hihn^{1,16}, Nicola Curry⁶⁵, Cesare Danesino⁶⁶, Matthew Daniels^{67,68}, Louise Daugherty^{1,16}, John Davis^{1,16}, Sri V V Deevi^{1,16}, Timothy Dent⁶⁸, Eleanor Dewhurst^{1,16}, Peter Dixon⁴⁸, Kate Downes^{1,16}, Anna Drazyk⁶⁹, Elizabeth Drewe⁷⁰, Tina Dutt⁷¹, David Edgar⁷², Karen Edwards^{1,16}, William Egner⁷³, Wendy Erber⁷⁴, Marie Erwood^{1,16}, Maria C Estiu⁷⁵, Gillian Evans⁷⁶, Dafydd Gareth Evans⁷⁷, Tamara Everington⁷⁸, Mélanie Eyries⁷⁹, Remi Favier^{80,81,82}, Debra Fletcher^{1,16}, James Fox^{1,16}, Amy Frary^{1,16}, Courtney French⁸³, Kathleen Freson⁸⁴, Mattia Frontini^{1,16}, Daniel Gale⁸⁵, Henning Gall⁸⁶, Claire Geoghegan²⁶, Terry Gerighty²⁶, Stefano Ghio⁸⁷, Hossein-Ardeschir Ghofrani^{62,86}, Simon Gibbs³⁸, Kimberley Gilmour⁸⁸, Barbara Girerd^{89,90,91}, Sarah Goddard⁹², Keith Gomez^{21,22}, Pavels Gordins⁹³, David Gosal⁶, Stefan Gräf^{1,16,29}, Luigi Grassi^{1,16}, Daniel Greene^{1,16,17}, Lynn Greenhalgh⁹⁴, Andreas Greinacher⁹⁵, Paolo Gresele⁹⁶, Philip Griffiths^{97,98}, Sofia Grigoriadou⁹⁹, Russell Grocock²⁶, Detelina Grozeva¹¹, Scott Hackett¹⁰⁰, Charaka Hadinnapola²⁹, William Hague¹⁰¹, Matthias Haimel^{1,16,29}, Matthew Hall⁷⁰, Helen Hanson⁹⁴, Kirsty Harkness¹⁰², Andrew Harper^{38,67,103}, Claire Harris⁶⁴, Daniel Hart⁵⁵, Ahamad Hassan¹⁰⁴, Grant Hayman¹⁰⁵, Alex Henderson¹⁰⁶, Jonathan Hoffmann⁵⁴, Rita Horvath^{107,108}, Arjan Houweling³⁰, Luke Howard³⁸, Fengyuan Hu^{1,16}, Gavin Hudson¹⁰⁷, Joseph Hughes²⁶, Aarnoud Huissoon¹⁰⁰, Marc Humbert^{89,90,91}, Sean Humphray²⁶, Sarah Hunter²⁶, Matthew Hurles¹⁰⁹, Louise Izatt¹¹⁰, Roger James^{1,16}, Sally Johnson¹¹¹, Stephen Jolles^{112,113}, Jennifer Jolley^{1,16}, Neringa Jurkute^{14,22}, Mary Kasanicki¹¹⁴, Hanadi Kazkaz¹¹⁵, Rashid Kazmi³¹, Peter Kelleher³⁹, David Kiely⁵⁷, Nathalie Kingston¹, Robert Klima⁴⁴, Myrto Kostadima^{1,16}, Gabor Kovacs^{116,117}, Ania Koziell^{118,119}, Roman Kreuzhuber^{1,16}, Taco Kuijpers^{120,121}, Ajith Kumar³, Dinakantha Kumararatne¹¹⁴, Manju Kurian^{122,123}, Michael Laffan^{124,125}, Fiona Lalloo⁷⁷, Michele Lambert^{126,127}, Hana Lango Allen^{1,16}, Allan Lawrie¹²⁸, Mark Layton¹²⁴, Claire Lentaigne^{124,125}, Adam Levine⁸⁵, Rachel Linger^{1,16}, Hilary Longhurst⁹⁹, Eleni Louka^{18,19}, Robert MacKenzie Ross¹²⁹, Bella Madan¹³⁰, Eamonn Maher^{11,131}, Jesmeen Maimaris⁸⁸, Sarah Mangles¹³², Rutendo Mapeta^{1,16}, Kevin Marchbank⁶⁴, Stephen Marks⁹, Hugh S Markus⁶⁹, Hanns-Ulrich Marschall¹³³, Andrew Marshall^{134,135,136}, Jennifer Martin^{1,16,29}, Mary Mathias¹³⁷, Emma Matthews^{22,138}, Heather Maxwell¹³⁹, Paul McAlinden⁶⁴, Mark McCarthy^{19,103,140}, Stuart Meacham^{1,16}, Adam Mead¹⁴¹, Karyn Megy^{1,16}, Sarju Mehta¹⁴², Michel Michaelides¹⁴, Carolyn Millar^{124,125}, Shahin Moledina⁹, David Montani^{89,90,91}, Tony Moore^{14,15}, Nicholas Morrell^{1,29}, Monika Mozere⁸⁵, MPGN/C3 Glomerulopathy Rare Renal Disease group¹⁴³, Keith Muir¹⁴⁴, Andrew Mumford^{145,146}, Michael Newnham²⁹, Jennifer O'Sullivan¹³⁰, Samya Obaji⁵⁶, Steven Okoli^{18,19}, Andrea Olschewski¹¹⁶, Horst Olschewski^{116,117}, Kai Ren Ong⁵⁴, Elizabeth Ormondroyd^{67,68}, Willem Ouwehand^{1,16}, Sofia Papadia^{1,16}, Soo-Mi Park^{12,13,147}, David Parry⁵, Joan Paterson^{11,12,13}, Andrew Peacock⁵³, John Peden²⁶, Kathelijne Peerlinck⁸⁴, Christopher Penkett^{1,16}, Joanna Pepke-Zaba¹⁴⁸,

Romina Petersen^{1,16}, Angela Pyle¹⁰⁷, Stuart Rankin⁴⁴, Anupama Rao⁹, F Lucy Raymond^{1,11}, Paula Rayner-Matthews^{1,16}, Christine Rees²⁶, Augusto Rendon⁴⁵, Tara Renton⁴³, Andrew Rice^{149,150}, Sylvia Richardson¹⁷, Alex Richter¹⁰, Irene Roberts^{18,19,151}, Catherine Roughley⁷⁶, Noemi Roy^{18,19,151}, Omid Sadeghi-Alavijeh⁸⁵, Moin Saleem²⁷, Nilesh Samani¹⁵², Alba Sanchis-Juan^{1,16}, Ravishankar Sargur⁷³, Simon Satchell²⁷, Sinisa Savic¹⁵³, Laura Scelsi⁸⁷, Sol Schulman¹⁵⁴, Marie Scully¹¹⁵, Claire Searle¹⁵⁵, Werner Seeger⁸⁶, Carrock Sewell¹⁵⁶, Denis Seyres^{1,16}, Susie Shapiro⁶⁵, Olga Sharmardina^{1,16}, Rakefet Shtoyerman¹⁵⁷, Keith Sibson¹³⁷, Lucy Side³, Ilenia Simeoni^{1,16}, Michael Simpson¹⁵⁸, Suthesh Sivapalaratnam⁵⁵, Anne-Bine Skytte¹⁵⁹, Katherine Smith⁴⁵, Kenneth G C Smith^{29,160}, Katie Snape¹⁶¹, Florent Soubrier⁷⁹, Simon Staines^{1,16}, Emily Staples²⁹, Hannah Stark^{1,16}, Jonathan Stephens^{1,16}, Kathleen Stirrups^{1,16}, Sophie Stock^{1,16}, Jay Suntharalingam¹²⁹, Emilia Swietlik²⁹, R Campbell Tait¹⁶², Kate Talks²⁸, Rhea Tan⁶⁹, James Thaventhiran²⁹, Andreas Themistocleous²⁵, Moira Thomas¹⁶³, Kate Thomson^{67,68}, Adrian Thrasher⁹, Chantal Thys⁸⁴, Marc Tischkowitz¹⁶⁴, Catherine Titterton^{1,16}, Cheng-Hock Toh⁷¹, Mark Toshner²⁹, Matthew Traylor⁶⁹, Carmen Treacy^{29,148}, Richard Trembath⁴¹, Salih Tuna^{1,16}, Wojciech Turek⁴⁴, Ernest Turro^{1,16,17}, Tom Vale²⁵, Chris Van Geet⁸⁴, Natalie Van Zuydam²⁵, Marta Vazquez-Lopez⁴⁹, Julie von Ziegenweidt^{1,16}, Anton Vonk Noordegraaf³⁰, Quintin Waisfisz³⁰, Suellen Walker⁹, James Ware^{38,39,58}, Hugh Watkins^{67,68,103}, Christopher Watt^{1,16}, Andrew Webster^{14,15}, Wei Wei⁵⁰, Steven Welch¹⁰⁰, Julie Wessels⁹², Sarah Westbury^{145,146}, John-Paul Westwood¹¹⁵, John Wharton⁶², Deborah Whitehorn^{1,16}, James Whitworth^{11,12,13}, Martin R Wilkins⁶², Catherine Williamson^{48,165}, Edwin Wong⁹⁸, Nicholas Wood^{166,167}, Yvette Wood^{1,16}, Geoff Woods^{11,114}, Emma Woodward⁷⁷, Stephen Wort^{39,41}, Austen Worth⁹, Katherine Yates^{1,16,29}, Patrick Yong¹⁶⁸, Tim Young^{1,16}, Ping Yu^{1,16}, Patrick Yu-Wai-Man⁵⁰

Affiliations

¹NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK. ²Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK. ³North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. ⁴MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, UK. ⁵Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK. ⁶Salford Royal NHS Foundation Trust, Salford, UK. ⁷Queens Centre for Haematology and Oncology, Castle Hill Hospital, Hull and East Yorkshire NHS Trust, Cottingham, UK. 8European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK. ⁹Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. ¹⁰University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK. ¹¹Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. ¹²Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK. ¹³NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK. 14 Moorfields Eye Hospital NHS Foundation Trust, London, UK. 15 UCL Institute of Ophthalmology, University College London, London, UK. ¹⁶Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. ¹⁷MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK. ¹⁸MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK. ¹⁹NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK. ²⁰Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany. ²¹The Katharine

Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, UK. ²²University College London, London, UK. ²³Department of Clinical Genetics, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK. ²⁴University of Leicester, Leicester, UK. ²⁵The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK. ²⁶Illumina Limited, Chesterford Research Park, Little Chesterford, Nr Saffron Walden, UK. ²⁷Bristol Renal, University of Bristol, Bristol, UK. ²⁸Haematology Department, Royal Victoria Infirmary, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK. ²⁹Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. ³⁰Department of Pulmonary Medicine, VU University Medical Centre, Amsterdam, The Netherlands. ³¹Southampton General Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK. 32MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK. ³³NIHR Biomedical Research Centre for Mental Health, Maudsley Hospital, London, UK. ³⁴Newcastle University, Newcastle upon Tyne, UK. ³⁵Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK. ³⁶Department of Clinical Genetics, Royal Devon & Exeter Hospital, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK. 37 Department of Immunology, Leicester Royal Infirmary, Leicester, UK. ³⁸National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, UK. 39Royal Brompton Hospital, Royal Brompton and Harefield NHS Foundation Trust, London, UK. 40Royal Free London NHS Foundation Trust, London, UK. 41King's College London, London, UK. 42Guy's and St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK. ⁴³King's College Hospital NHS Foundation Trust, London, UK. ⁴⁴High Performance Computing Service, University of Cambridge, Cambridge, UK. ⁴⁵Genomics England Ltd, London, UK. ⁴⁶Epidemiology and Biostatistics, Imperial College London, London, UK. ⁴⁷Imperial College Healthcare NHS Trust, London, UK. ⁴⁸Division of Women's Health, King's College London, London, UK. ⁴⁹Women's Health Research Centre, Surgery and Cancer, Faculty of Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK. 50 Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. 51 Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK. 52Children's Renal and Urology Unit, Nottingham Children's Hospital, QMC, Nottingham University Hospitals NHS Trust, Nottingham, UK. 53 Golden Jubilee National Hospital, Glasgow, UK. 54West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK. 55The Royal London Hospital, Barts Health NHS Foundation Trust, London, UK. ⁵⁶The Arthur Bloom Haemophilia Centre, University Hospital of Wales, Cardiff, UK. ⁵⁷Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital NHS Foundation Trust, Sheffield, UK. 58MRC London Institute of Medical Sciences, Imperial College London, London, UK. ⁵⁹National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore. 60 Division of Cardiovascular & Metabolic Disorders, Duke-National University of Singapore, Singapore, Singapore. ⁶¹Imperial College Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK. ⁶²Department of Medicine, Imperial College London, London, UK. 63 National Pulmonary Hypertension Service (Newcastle), The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK. 64Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK. 65Oxford Haemophilia and Thrombosis Centre, The Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford, UK. 66Department of Molecular Medicine, General Biology, and Medical Genetics Unit, University of Pavia, Pavia, Italy. ⁶⁷Department of Cardiovascular Medicine, Radcliffe Department of

Medicine, University of Oxford, Oxford, UK. ⁶⁸Oxford University Hospitals NHS Foundation Trust, Oxford, UK. ⁶⁹Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. 70 Nottingham University Hospitals NHS Trust, Nottingham, UK. ⁷¹The Roald Dahl Haemostasis and Thrombosis Centre, The Royal Liverpool Hospital, Liverpool, UK. ⁷²Regional Immunology Service, Kelvin Building, Royal Victoria Hospital, Belfast, UK. ⁷³Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK. ⁷⁴Pathology and Laboratory Medicine, University of Western Australia, Crawley, Australia. ⁷⁵Ramón Sardá Mother's and Children's Hospital, Buenos Aires, Argentina. ⁷⁶Haemophilia Centre, Kent & Canterbury Hospital, East Kent Hospitals University Foundation Trust, Canterbury, UK. ⁷⁷Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester, UK. ⁷⁸Salisbury District Hospital, Salisbury NHS Foundation Trust, Salisbury, UK. ⁷⁹Departement de genetique, Hopital Pitie-Salpetriere, Paris, France. ⁸⁰Service d'Hématologie Biologique, Hôpital d'enfants Armand Trousseau, Paris, France, Paris, France. 81 Inserm U1170, Villejuif, France. 82 Assistance Publique-Hôpitaux de Paris, Département d'Hématologie, Hôpital Armand Trousseau, Paris, France. 83 Department of Paediatrics, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. ⁸⁴Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium. 85 UCL Centre for Nephrology, University College London, London, UK. ⁸⁶University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany. ⁸⁷Division of Cardiology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy. 88UCL Great Ormond Street Institute of Child Health, London, UK. 89Universite Paris-Sud, Le Kremlin-Bicêtre, France. 90Service de Pneumologie, DHU Thorax Innovation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France. 91INSERM U999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France. 92 University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK. 93 East Yorkshire Regional Adult Immunology and Allergy Unit, Hull Royal Infirmary, Hull & East Yorkshire Hospitals NHS Trust, Hull, UK. ⁹⁴Department of Clinical Genetics, Liverpool Women's NHS Foundation, Liverpool, UK. ⁹⁵Institute for Immunology and Transfusion Medicine, University of Greifswald, Greifswald, Germany. 96Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy. ⁹⁷Mitochondrial Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK. ⁹⁸Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK. ⁹⁹Barts Health NHS Foundation Trust, London, UK. ¹⁰⁰Birmingham Heartlands Hospital, Heart of England NHS Foundation Trust, Birmingham, UK. 101 ARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and Gynaecology, The University of Adelaide, Women's and Children's Hospital, Adelaide, Australia. 102 Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK. ¹⁰³Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. ¹⁰⁴Department of Neurology, Leeds Teaching Hospital NHS Trust, Leeds, UK. ¹⁰⁵Epsom & St Helier University Hospitals NHS Trust, London, UK. ¹⁰⁶Northern Genetics Service, The Newcastle upon Tyne Hospitals NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK. ¹⁰⁷Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK. ¹⁰⁸John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK. ¹⁰⁹Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK. ¹¹⁰Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK. 111 Department of Paediatric Nephrology, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK. 112 University Hospital of Wales, Cardiff, UK. 113 Cardiff & Vale University LHB, Cardiff, UK. ¹¹⁴Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge,

UK. ¹¹⁵University College London Hospitals NHS Foundation Trust, London, UK. ¹¹⁶Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria. 117 Dept of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria. 118 Division of Transplantation Immunology and Mucosal Biology, Department of Experimental Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, UK. 119 Department of Paediatric Nephrology, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK. 120 Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands. ¹²¹Department of Clinical Genetics, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands. 122 Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK. ¹²³Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. 124 Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK. ¹²⁵Department of Haematology, Imperial College London, London, UK. ¹²⁶Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, USA. 127 Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA. ¹²⁸Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK. ¹²⁹Royal United Hospitals Bath NHS Foundation Trust, Bath, UK. 130 Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK. 131 Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK. 132 Haemophilia, Haemostasis and Thrombosis Centre, Hampshire Hospitals NHS Foundation Trust, Basingstoke, UK. ¹³³Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. ¹³⁴Faculty of Medical and Human Sciences, Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, Manchester, UK. ¹³⁵Department of Clinical Neurophysiology, Manchester Royal Infirmary, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK. ¹³⁶National Institute for Health Research/Wellcome Trust Clinical Research Facility, Manchester, UK. ¹³⁷Department of Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. ¹³⁸The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK. 139 Royal Hospital for Children, NHS Greater Glasgow and Clyde, Glasgow, UK. 140Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK. 141Centre for Haematology, Department of Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK. ¹⁴²Department of Clinical Genetics, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK. ¹⁴³MPGN/C3 Glomerulopathy Rare Renal Disease group, , UK. ¹⁴⁴Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK. 145 School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK. ¹⁴⁶University Hospitals Bristol NHS Foundation Trust, Bristol, UK. 147 East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK. ¹⁴⁸Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK. ¹⁴⁹Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK. ¹⁵⁰Chelsea and Westminster Hospital NHS Foundation Trust, London, UK. ¹⁵¹Department of Paediatrics, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK. ¹⁵²Departments of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, University of Leicester, Leicester, UK. ¹⁵³The Leeds Teaching Hospitals NHS Trust, Leeds, UK. ¹⁵⁴Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, USA. ¹⁵⁵Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK. ¹⁵⁶Scunthorpe General Hospital, Northern Lincolnshire and Goole NHS Foundation Trust, Scunthorpe, UK. ¹⁵⁷Clinical Genetics Institute, Kaplan Medical Center, Rehovot, Israel. ¹⁵⁸Genetics and Molecular Medicine, King's College London, London, UK. ¹⁵⁹Aarhus University Hospital, Aarhus, Denmark. ¹⁶⁰Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. ¹⁶¹Department of Clinical Genetics, St George's University Hospitals NHS Foundation Trust, London, UK. ¹⁶²Glasgow Royal Infirmary, NHS Greater Glasgow and Clyde, Glasgow, UK. ¹⁶³Gartnavel General Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK. ¹⁶⁴Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK. ¹⁶⁵Institute of Reproductive and Developmental Biology, Surgery and Cancer, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK. ¹⁶⁶Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK. ¹⁶⁷UCL Genetics Institute, London, UK. ¹⁶⁸Frimley Park Hospital, NHS Frimley Health Foundation Trust, Camberley, UK.

US PAH Biobank Consortium

Alison Theuer⁷², Anagha Malur⁵⁹, Ann Williams³⁶, Anne Dotson⁷³, Ashley Warden¹⁸, Brandy Harrington⁶⁹, Brenda Vang⁶⁹, Caitlin Ziemak²², Nancy Casanova⁴¹, Elizabeth Caskey⁷¹, Catherine MacDonald⁴¹, Courtney Rowley¹⁸, Daniel Larimore¹⁸, Daniela Brady⁶³, David Tomer³⁵, Anne Davis⁷⁵, Debra Broach⁵⁰, Jane Devereux⁶³, Ellen Lovato²⁷, Eric Stratton⁶⁶, Erin Turk⁵⁰, Esperanza Jackson²¹, Gina Paciotti⁶⁹, Gretchen Peichel⁶⁹, Hellina Birru²², Holly del Junco²⁰, Rebecca Ingledue³⁶, Jackie Bruno⁷², Jan Drake²⁴, Jennifer Marks⁵⁰, Jessica Pisarcik⁶⁷, Jill Spears¹⁸, Joseph Santiago²⁴, Jordyn DeMartino¹⁸, Joy Beckmann⁵⁷, Julia Palmer¹⁸, Karen Visnaw⁴⁴, Karla Kennedy³⁷, Karlise Lewis⁴⁶, Kathleen Miller-Reed⁴⁶, Kelly Hannon²⁰, Kimberly McClain⁷³, Laura Dillon⁶⁹, Lekan Olanipekun⁷⁰, Lillian Mendibles⁴¹, Lindsey Hawke¹⁷, Linnea Brody⁷⁵, Louise Durst³⁹, Mary Andrews⁶⁵, Melissa Allahua⁴⁷, Melissa Stratoberdha²⁶, Merte Lemma⁵⁶, Molly Cope⁷³, Mya Franzo⁷³, Natalia Feliz²¹, Nicholas Hawkes⁴¹, Tracy Norwood⁷¹, Opal Wilson⁷¹, Amy Palmisciano⁴⁷, Peggy Gruhlke³⁹, Priscilla Correa²³, Randy Blake⁵⁷, Reema Karnekar⁵⁹, Robyn Do¹⁸, Kristal Rohwer³⁹, Sara Ahmed²², Kimberly Schiltz¹⁵, Page Scovel¹⁵, Shannon Cordell⁶⁰, Sharon Heuerman²⁷, Shazzra Ahmad⁶⁴, Sylwia Szuberla²⁰, Tammy Roads³⁶, Thoeun Iem³⁹, Traci Mcgaha⁶⁷, Tracy Urban⁴⁶, Valerie Aston³⁵, Waleed Ayesh⁶⁴, Allison Light⁷², Abby Arkon¹⁹, Andrea Tavlarides²⁶, Audrey Anderson²¹, John Bindu⁵⁷, Deedre Boekwig³⁵, Donna Singleton⁷¹, Inna Abrea²⁶, Jennifer Lee⁴⁰, Mark Ormiston¹⁷, Renesa Whitman²¹, Royanne Holy⁴⁰, Sisama Almeida-Peters³⁷, Tosin Igenoza⁷⁰, Hap Farber⁶⁶, Auvo Reponen⁴⁵, Mukta Barve⁴⁵, Amber Gygi⁴⁵, Clayborne Winslow⁴⁵

- [9] Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States;
- [15] Division of Cardiovascular Medicine, University of Iowa, Iowa City IA, United States;
- [17] Queen's University, Kingston ON, Canada;
- [18] Medical University of South Carolina, Charleston SC, United States;
- [19] Vanderbilt University-Peds, Nashville TN, United States;
- [20] University of Colorado Denver, Aurora CO, United States;

- [21] Baylor Research Institute, Plano TX, United States;
- [22] Medstar Health, Washington D.C., United States;
- [23] Allegheny-Singer Research Institute, Pittsburgh PA, United States;
- [24] Ohio State University, Columbus OH, United States;
- [26] Mayo Clinic Florida, Jacksonville FL, United States;
- [27] Washington University, St. Louis MO, United States;
- [35] Department of Medicine at Intermountain Medical Center and the University of Utah, Murray UT, United States;
- [36] University of Cincinnati, Cincinnati OH, United States;
- [37] Duke University Medical Center, Durham NC, United States;
- [39] Mayo Clinic, Rochester MN, United States;
- [40] Weill Cornell Medical College and The Houston Methodist Hospital, Houston TX, United States;
- [41] Department of Medicine and Arizona Health Sciences Center, University of Arizona, Tucson, AZ, United States;
- [44] Tufts Medical Center, Boston MA, United States;
- [45] Cincinnati Children's Hospital, Cincinnati OH, United States;
- [46] Children's Hospital of Colorado, University of Colorado Denver, Aurora CO, United States;
- [47] Rhode Island Hospital, Providence RI, United States;
- [50] Indiana University, Indianapolis IN, United States;
- [56] Inova Heart and Vascular Institute, Falls Church VA, United States;
- [57] LA Biomedical Research Institute at Harbor-UCLA, Torrance CA, United States;
- [59] East Carolina University, Greenville NC, United States;
- [60] Vanderbilt University Medical Center, Nashville TN, United States;
- [63] Columbia University, New York NY, United States;
- [64] Wayne State University, Detroit MI, United States;
- [65] University Hospital of Cleveland, Cleveland OH, United States;
- [66] Boston University School of Medicine, Boston MA, United States;
- [67] University of Pittsburgh, Pittsburgh PA, United States;
- [69] University of Minnesota, Minneapolis MN, United States;
- [70] UT Southwestern, Dallas TX, United States;
- [71] LSU Health, Shreveport LA, United States;
- [72] University of Rochester Medical Center, Rochester NY, United States;
- [73] Spectrum Health Hospitals, Grand Rapids MI, United States;
- [75] Seattle Children's Hospital, Seattle WA, United States;