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ABSTRACT Asthma is a common condition caused by immune and respiratory dysfunction, and it is
often linked to allergy. A systems perspective may prove helpful in unravelling the complexity of asthma
and allergy. Our aim is to give an overview of systems biology approaches used in allergy and asthma
research. Specifically, we describe recent “omic”-level findings, and examine how these findings have been
systematically integrated to generate further insight.

Current research suggests that allergy is driven by genetic and epigenetic factors, in concert with
environmental factors such as microbiome and diet, leading to early-life disturbance in immunological
development and disruption of balance within key immuno-inflammatory pathways. Variation in inherited
susceptibility and exposures causes heterogeneity in manifestations of asthma and other allergic diseases.
Machine learning approaches are being used to explore this heterogeneity, and to probe the
pathophysiological patterns or “endotypes” that correlate with subphenotypes of asthma and allergy.
Mathematical models are being built based on genomic, transcriptomic and proteomic data to predict or
discriminate disease phenotypes, and to describe the biomolecular networks behind asthma.

The use of systems biology in allergy and asthma research is rapidly growing, and has so far yielded
fruitful results. However, the scale and multidisciplinary nature of this research means that it is
accompanied by new challenges. Ultimately, it is hoped that systems medicine, with its integration of
omics data into clinical practice, can pave the way to more precise, personalised and effective management
of asthma.
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Introduction
Asthma is a common yet complex disease that involves immune and respiratory dysfunction, and it is
often associated with allergy. The ongoing prevalence of asthma and allergy has been linked to changes in
environment and lifestyle [1, 2]. But while we know of several genetic and environmental determinants of
asthma, the potential interactions between these determinants remain unclear. Furthermore, asthma and
allergy are umbrella terms that describe a spectrum of disease, with unexplained heterogeneity in clinical
manifestations. Finally, with the development of high-throughput technologies, we may be able to unravel
this complexity, but it remains challenging to process, analyse and interpret the large volumes of biological
data that emerge from these technologies. All these challenges have prompted researchers to search for
new methods of inquiry more suited to these research problems.

Systems biology is a relatively recent development that addresses the growing complexity of biomedical
research questions. The term was coined in the 1960s to describe mathematical modelling of physiological
systems [3]. Today it embodies expertise across multiple fields, including biology, mathematics, statistics,
informatics and computer science. The “systems” community is diverse and as such there is no singular
definition of the term “systems biology” [4]. However, it is commonly presented as the study of biomedical
problems involving complex systems and their interactions, by surveying and integrating high-volume data
that may cover wide spatiotemporal scales [3]. These “big datasets” typically originate from “omics”, fields
of study involving high-throughput measurement of biomolecules: for instance, genomics for DNA,
transcriptomics for RNA transcripts and proteomics for translated proteins (figure 1). Mathematical and
computational expertise is then required to explore this high-volume data, using techniques such as
dimension reduction, data- and text-mining, modified statistical analyses that account for spatiotemporal
complexity and multiple testing burden, machine learning, and mathematical modelling. Further
perturbation experiments may be performed, where a biological system can be disrupted (e.g. via receptor
antagonists or gene knockouts) to identify functionally relevant elements of the system [5, 6]. Therefore,
systems biology is by its very nature multi- and inter-disciplinary.

The practice of systems biology follows two approaches: an unbiased, hypothesis-free data-driven
approach, where few a priori assumptions are made and models are learnt from the data; and a
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FIGURE 1 “Omics” in allergy, and their interrelationships. A depiction of the various omics that can be found
in allergy and asthma research. Lines connecting the omics represent various biological relationships,
associations or interactions that may exist. In systems biology, bottom-up approaches progress from the
molecular scale to the macroscopic scale; vice versa for top-down approaches.
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hypothesis-driven approach, where model design and analysis are guided by previous experiments and
expert knowledge [7]. The data-driven approach is becoming increasingly popular as it can uncover new
knowledge on emergent behaviour from complex data, and can be used to generate new hypotheses. In
turn, hypothesis-driven studies can also be used to test those very hypotheses. For instance, data-driven
approaches allow us to determine new subphenotypes of asthma, while hypothesis-driven studies will allow
us to test the relationship of these subphenotypes to existing paradigms of disease (T2-driven versus
non-T2). Furthermore, systems biology can be dichotomised into top-down versus bottom-up approaches,
to describe the direction of enquiry in decreasing (big to small, long to short, system to components) or
increasing spatiotemporal scales (small to big, etc.), respectively (figure 1) [8, 9].

On the surface, systems biology seems antithetical to the reductionist paradigm of old. However,
systems-based approaches can produce new insights on how to proceed with reductionist experiments, and
vice versa. In addition, there are strengths and weaknesses attached to each; while reductionist methods
can oversimplify problems, their tests are more appropriate in contexts such as causal inference.
Nonetheless, systems approaches are becoming indispensable to biomedical research; they allow us to
better understand disease phenomena, and form the basis for precision medicine, helping us improve the
screening and management of disease.

Asthma and allergy, as biomedical problems, are well suited to systems approaches. These diseases have
complex pathogenesis, with multiple tiers of biological complexity, polygenicity and gene–environment
interactions. Systems approaches used in asthma and allergy research include 1) discovery of disease
associations within each omic field; 2) identification of relationships within and across omic fields;
3) examination of heterogeneity of disease states and phenotypes, typically by exploring the
multidimensional structure of omic data via clustering or classification; 4) investigation of interconnections
between system components in omic data by network analysis; and 5) mathematical modelling to model
physiological systems or disease states, and to generate and test predictions (figure 2). Although the final
approach is closest to the original formulation of systems biology, our review takes a high-level look at all
approaches, with a focus on the first three.

Overview of omic findings in allergy and asthma
We begin our examination from the bottom up: from the molecular level of genomes and transcriptomes
to the macroscopic level of observable phenotypes. We offer high-level summaries of recent findings at
each level of profiling. As allergy-related mechanisms comprise a significant portion of asthma
pathogenesis, much of the discussion involves findings related to allergic diseases at large. However, there
is some exploration of the omics of nonallergic asthma.

Genomics
Asthma and allergy are highly heritable, with estimated heritability ranging from 35% to 95% [10]. In the
past half-century, the quantitation of genetic variation has progressed from rough “ballpark”
measurements, such as restriction fragment length polymorphisms (RFLP), to precise single-nucleotide
variants or polymorphisms (SNPs) interrogated en masse using DNA microarrays. More recently, there has
been a move towards whole-exome and whole-genome sequencing. The complexity of genetic data analysis
has grown in parallel, from candidate gene studies, to genome-wide linkage studies within pedigrees, to
genome-wide association analyses (GWAS) [11]. The GWAS approach is based on one-by-one association
testing of thousands to millions of genetic variants across the genome with a phenotype of interest (e.g.
asthma versus non-asthma status), with subsequent statistical adjustments for the multiple testing burden.
The logic of adjusting for multiple testing is fundamental to many other omic-wide analyses, and is a key
reason for the need for large sample sizes when dealing with such analysis.

However, while some older associations from linkage and candidate gene studies have been replicated in
GWAS (e.g. IL13/IL4 and IL4R), most have not. There is low concordance of significant results between
these older studies and GWAS. These suggest that 1) older findings may be plagued by false positives;
2) each approach may have its own use: positional candidates from linkage studies may flag variants
determining intrafamily disease risk, while GWAS flag variants determining population-wide risk; and
3) rarer or weaker gene associations may need larger sample sizes in GWAS to achieve stringent multiple
testing thresholds. The latter is exacerbated by the difficulty of precise phenotyping in large population
samples. However, the prevailing view in the human genetics community is that linkage and candidate gene
studies of old were hampered by limitations in methodology and assumptions and frequently did not replicate
in independent samples, thus many have been discounted in favour of those provided by GWAS [12].

In the past 10 years, GWAS have identified loci shared across multiple allergic phenotypes, including
asthma, allergic rhinitis/hayfever, atopic dermatitis/eczema and food allergy (supplementary table S1).
These probably represent genetic contributors to general allergy, and include: the human leukocyte antigen
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(HLA) locus, specifically HLA-DQ/DRB1, HLA-DQA1/2 and HLA-B/C (6p21.32-33); C11orf30/LRRC32
(11q13.5); IL13/RAD50 (5q31.1); IL1RL1/IL18R1 (2q12.1); and TSLP/WDR36 (5q22.1) [11, 13–15]. Some
of these have plausible biological underpinnings linked to immune function; biomolecules such as IL13,
IL4, IL33 and TSLP are related to the “T2” immune response of type 2 helper T-cells (Th2) and innate
lymphoid cells (ILC)2, and these are classically implicated in allergy. The HLA region encodes major
histocompatibility complex class II molecules responsible for antigen presentation. Other associated genes
remain uncertain in terms of pathophysiology (e.g. WDR36, CLEC16A), and require further investigation.

Due to frequent comorbidity of asthma with other allergic diseases, there is difficulty in discerning
asthma-specific loci. Many loci previously thought to be unique to asthma [15] have now been found
across multiple allergic diseases [16]. However, there are some loci that do appear to act specifically for
certain asthma phenotypes. In particular, ORMDL3/GSDMB/LRRC3C (17q21.1) is linked to
childhood-onset asthma [17–19]. Some loci (e.g. TLR1/TLR6, ADAD1/IL2) may be linked to Th17-related
mechanisms of disease (supplementary table S1). Several studies and reviews have explored loci for asthma
subphenotypes (e.g. aspirin-mediated and occupational asthma) and in relation to other respiratory traits
(e.g. lung function, chronic obstructive pulmonary disease (COPD) and viral respiratory infections) [20–
24]; however, these results have been inconsistent. Lately, there has been a focus on loci with
ethnicity-specific effects: most of the aforementioned loci were identified primarily in European cohorts,
and newer studies have begun exploring non-European populations. For instance, PYHIN1 is significantly
associated with asthma, but only in individuals of African ancestry [18]. In addition, there is an increasing
focus on using admixture to map risk loci [10].

Subsequent to these findings, significant loci and their molecular products have been targeted via
numerous pharmacological approaches. Prior to the GWAS era, numerous anti-IgE (omalizumab),
anti-interleukin (IL)5 (mepolizumab), anti-IL13 (lebrikizumab), anti-IL4R (dupilmab) and anti-IL2RA
(daclizumab) antibodies [25–28] had been trialled with varying degrees of success. Following GWAS
discovery of new loci, other therapies (anti-IL33, IL6R, thymic stromal lymphopoietin (TSLP), etc.) have
been tested, again with modest results [28] (supplementary table S1). Such “biologics” are currently
reserved for asthma resistant to conventional forms of treatment [28, 29]. It is probable that certain
biologics (e.g. anti-T2 cytokine therapies) are only effective in individuals whose asthma is driven by
specific mechanisms (e.g. T2 and not T1 or Th17/ILC3). In addition, it is possible that varying efficacy
may depend on patient genetics and asthma subphenotype. Indeed, GWAS for responsiveness to asthma
therapy with β2-agonist bronchodilators, leukotriene modifiers and steroids [30, 31] have identified loci
distinct from disease-susceptibility loci. However, there have so far been few pharmacogenomic studies for
the reverse: directly exploring the effects of GWAS-derived disease risk variants on treatment efficacy.
Furthermore, many existing studies have been limited by lack of replication or inconsistent results. It
remains a challenge to apply pharmacogenetic findings in practice, and they have yet to make a significant
impact on current treatment and management.
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FIGURE 2 Overview of systems-based approaches to tackling research questions in allergy and asthma. The various ways in which systems biology
of allergy can be interrogated: a) discovery of disease associations within each omic field of enquiry; b) identification of relationships within and
across omics; c) examination of the heterogeneity of disease states or phenotypes, typically by exploring the structure of omic data via clustering
or classification; d) investigation of interconnections between system components in omic data by network analysis; and e) mathematical
modelling to model physiological systems or disease states, and to generate and test predictions. Diagrams are for illustrative purposes only and
do not convey real data. a) shows a simplified Manhattan plot, with the vertical axis representing negative log p-value (statistical significance),
horizontal axis representing chromosome and position and each point representing a single nucleotide polymorphism; the red line is the adjusted
p-value threshold, and significant loci are marked by “peaks” extending beyond the red line.
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Lately, there has been a push for risk scores based on genome-wide summary statistics. Despite the large
number of novel associations discovered using GWAS, these collectively explain only a small proportion of
the total heritability of asthma and allergy. The use of significant SNPs as a predictive tool for disease is
often limited [32]. The existing criteria for genome-wide significance may not be sensitive for so-called
“mid-hanging fruit” [33]: loci that are not genome-wide significant but still have an incremental effect on
the phenotype. Recently, alternative strategies such as genomic or polygenic risk scores (PRS) have been
employed to account for this missing signal. These use summary statistics from existing large-scale GWAS
to generate additive scores from either a genome-wide assortment of SNPs, or from a selection of highly
predictive SNPs. These have shown promise as predictive or risk-stratifying tools for other chronic
polygenic diseases such as cardiovascular disease [32], but in asthma and allergy research, existing PRS
have so far been limited to small subsets of genome-wide significant SNPs. BELSKY et al. [34] derived a PRS
based on 17 SNPs from an asthma GWAS [17], pruned by significance and linkage disequilibrium R2

threshold; this score was predictive for earlier asthma onset, allergy, reduced lung function and risk of
childhood asthma becoming persistent into adulthood. ARABKHAZAELI et al. [35] developed a similar score
for childhood allergy using 10 SNPs from a GWAS for adult allergy [36]. These methods, while
interesting, may be less predictive than models that use a broader genome-wide selection of thousands to
millions of SNPs, accounting for the known polygenic architectures of the diseases. For example, LEHTO

et al. [37] used a genome-wide PRS, but for affective traits, to identify possible shared genetic influences
between asthma and depression. It remains to be seen whether such findings replicate across multiple
studies, and whether PRS can be used to reliably capture disease pathophysiology.

Transcriptomics
The transcriptome represents the entire repertoire of genes expressed in an organism or cell. Mirroring the
developments in genomics, there has been a move from investigation of single-gene transcripts via
traditional methods (e.g. Northern blotting), to genome-wide methods involving oligonucleotide
microarrays, and most recently to RNA sequencing (RNA-seq, which involves reverse transcription to
cDNA followed by deep sequencing) [38]. Transcriptomes may be determined by aligning RNA-seq reads
to transcripts annotated in a reference genome, or assembling transcripts de novo, followed by
quantification based on abundance of reads per transcript. Unlike the genome, the transcriptome varies
across tissues and cell types, and changes dynamically during development and in response to external
stimuli. Common tissue sources for transcriptomics include blood with or without cell sorting; bronchial
epithelium, smooth muscle or sputum cells for asthma; nasal epithelium for allergic rhinitis; and skin for
atopic dermatitis. Different cell types may feature different associations, and this provides insight into how
various genes contribute to the many manifestations of allergy.

Recent studies of allergy have identified, across multiple tissue types, differential expression of genes
involved in innate and adaptive immunity, inflammatory and repair responses and epithelial integrity.
Cytokines (T2-related and others), chemokines and their receptors, host defence proteins (defensins),
protease inhibitors (SERPINs) and other multifunctional regulatory proteins (S100 family) are
differentially expressed in allergic diseases. SERPINs control various immune and inflammatory processes,
for instance by inhibiting neutrophil proteases (elastase, cathepsin G) and fibrinolytic enzymes
(plasminogen activators). S100 proteins commonly serve as damage-associated molecular patterns, signals
of cell stress or injury. As such, both SERPIN and S100 family proteins probably represent downstream
sequelae of the immune-inflammatory responses typically seen in asthma and allergic diseases. Multiple
studies have identified such changes for atopic dermatitis, in both lesional and non-lesional skin samples
[39–42]; and in airway epithelial or sputum samples of asthma [43–47]. For asthma, further analyses have
linked certain transcriptomic profiles to inflammatory subtypes of asthma: eosinophilic or T2-driven
airway inflammation has been associated with elevated airway expression of periostin (POSTN), CLCA1,
SERPINB2, CLC, CPA3 and DNASE1L3 [43, 44, 46]; while neutrophilic or Th17-linked inflammation has
instead been linked to expression of IL1B, ALPL, DEFB4B, CXCR2 and other chemokines [43, 47], an
expression profile that bears some similarities with psoriatic skin lesions [47]. Differences in gene
expression across inflammatory phenotypes are also reflected in blood and sputum transcriptomics [47],
and show some promise in being exploitable as putative biomarkers for disease subtypes [43].
Furthermore, there is evidence that T1 and Th17/ILC3 pathways act in partial opposition to each other,
and while T2-mediated eosinophilic inflammation is responsive to steroid treatment [44, 48], it may also
lead to enhanced Th17 activity and subsequent risk of neutrophilic inflammation [49]. Finally, although it
may be enticing to describe T2-mediated eosinophilic inflammation as “allergic”, and T1 or
Th17-mediated neutrophilic inflammation as “non-allergic”, other inflammatory profiles
(paucigranulocytic, mixed) also exist, thus complicating the narrative. Nonetheless, associating gene
expression profiles with specific inflammatory phenotypes may provide the next step towards improving
precision in managing asthma and allergic disease.
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It is notable that few of the aforementioned differentially expressed genes were identified as genome-wide
significant loci in previous GWAS for asthma. As discussed earlier, this is probably the result of
differential gene expression being indicative of inflammatory pathology downstream of the genetics. This is
supported by the observation that several expression quantitative trait loci (eQTLs) are located around
T2-related loci (IL4R, TSLP, IL13), and that unsupervised gene module analysis of airway transcriptomics
has revealed consolidation of certain expressed genes into T1-driven versus T2-driven modules [46]. eQTL
analyses are similar to GWAS, in that eQTLs are essentially SNPs with genome-wide significant effects on
expression of nearby genes, for instance by altering the regulatory region of those genes (cis-eQTLs) [50],
or altering a transcription factor for a distant gene (trans-eQTLs). Nowadays it is uncommon to see
GWAS without an accompanying eQTL analysis in related tissue types. Significant loci from asthma and
allergy GWAS that overlap with eQTLs in specific tissue types (usually whole blood) are shown in
supplementary table S1. A limitation of whole blood eQTL analyses is that it is not clear whether the
eQTL is active across all blood cell types, or only within specific blood or immune cells.

More recently, single-cell transcriptomics have come to the fore. Scientists can now isolate single cells (e.g.
micromanipulation with capillary pipettes, flow-activated cell sorting, microfluidics) [51], then investigate
transcriptional differences between individual cells within a sample, rather than assuming homogeneous
expression and averaging transcription across the sample. Single-cell (sc)RNA-seq presents new
opportunities to explore the inner workings of the human immune system, whether it be exploring
trajectories of certain types of immune cells ordered by pseudotime, mapping immune cell lineages or
investigating B- and T-cell repertoires [52–54]. Of particular future interest is the potential harnessing of
scRNA-seq to identify drug or vaccine targets for modifying B- and T-cell responses [53]. Most recently,
using scRNA-seq, CROOTE et al. [55] identified that certain IgE antibodies of peanut-allergic individuals
converged upon identical gene rearrangements. CHIANG et al. [56] identified that a subset of Th2 cells
(Th2+) in peanut-allergic individuals demonstrated functions beyond IgE isotype switching, such as
expression of cytokines that contributed to local tissue inflammation (IL-3, colony-stimulating factor (CSF)
2), as well as resistance to attempted suppression by regulatory (Treg) T-cells. Widespread adoption of
scRNA-seq is currently limited by high cost, high computational demand of data processing and inherent
challenges in subsequent statistical analyses, specifically in relation to sample normalisation, batch effects
and other sources of bias [51, 54]. However, it is anticipated that these obstacles will be gradually resolved
with time. There is ongoing development of statistical and systems-based approaches designed to deal with
such data, especially measures of trajectory and pseudotime [57].

Epigenomics
The epigenome is the set of heritable biochemical modifications that change gene expression, but are not
coded in the DNA sequence. Epigenetics functions as a bridge between genome and transcriptome,
providing mechanisms by which the micro- or macroenvironment can influence gene expression within
each cell, and by which transgeneration inheritance can occur after initial exposure to an
epigenome-modifying environment [58, 59]. Epigenetic signals include 1) DNA methylation at CpG
islands, which silences expression of adjacent genes; 2) histone modifications (acetylation, methylation and
others), whose effects vary depending on type and position of modification; and 3) noncoding RNA such
as microRNA (miRNA), which can silence genes by binding or degrading complementary mRNA [60].
Together, these epigenetic markers cause changes in accessibility of a local DNA segment to transcription
or regulatory factors.

Low- and high-throughput detection methods exist for each type of epigenetic signal.
Methylation-sensitive restriction fingerprinting and microarrays for detecting 5-methylcytosine have been
used to describe the DNA “methylome”. Genome-wide histone modifications can be detected using
chromatin immunoprecipitation (ChIP). Next-generation sequencing options also exist (miRNA-seq,
DNase-seq, formaldehyde-assisted isolation of regulatory elements (FAIRE)-seq, ChIP-seq, 3C-seq), which
function by isolating DNA fragments that are accessible or inaccessible to a factor of interest, and
sequencing those fragments to determine their identity [9]. Epigenome-wide association studies can then
be performed to identify epigenetic features for a given trait or disease. Finally, like the transcriptome, the
epigenome is responsive to external stimuli and varies across cell types, and most epigenomic studies of
allergy have so far examined blood, skin or airway samples.

There is evidence that development and maturation of T-cell lineages is partly determined by epigenetic
changes [58]. Th2 differentiation is driven by STAT6 and GATA3, resulting in epigenetic changes (DNA
methylation, histone acetylation) that induce Th2-related (IL4/IL13) and suppress Th1-related (TBET,
IFNG, IL-12/STAT4 pathway) expression; conversely, Th1 differentiation is driven by STAT4 and TBET to
elicit the opposite epigenetic changes; finally, Treg differentiation is driven by STAT5, with associated
epigenetic changes in FOXP3 and the IL10 locus [58, 60]. Given the role of epigenetics in T-cell
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development, it is plausible that allergic disease may be linked to altered epigenetics affecting this process.
Epigenetic signals have been observed across multiple tissue types in allergy. Changes to DNA methylation
have been noted in loci related to Th2 function and T-cell development (IL4R, TSLP, IFNG, FOXP3,
STAT5A) [59, 61–65], while other significant loci control antigen presentation, eosinophil activity, lipid
metabolism and mitochondrial function [66, 67]. The relationship between histone modifications and
allergy or asthma is less clear. Some studies have shown changes to global histone acetylation with reduced
deacetylating-to-acetylating (HDAC-to-HAT) activity in asthmatic lungs compared to normal [68–70];
while others suggest that HDAC inhibition can improve the suppressive function of Tregs [71]. Similarly,
certain miRNAs are known to influence allergy risk. For example, OKOYE et al. [72] observed that miR-155
and miR-146 may be critical in determining T-cell differentiation towards Th2 versus Th1/Th17. Other
relevant miRNAs are reviewed elsewhere [73, 74]. There remain too many knowledge gaps to allow us to fully
use epigenetics to our advantage in managing asthma and allergy. However, investigation of the full
compendium of miRNA species is progressing rapidly, and may lead to new targeted therapeutics in the future.

An important aspect of epigenetics is the link to environmental exposures. Because the development of the
immune system begins in utero and continues through infancy, environmental modifiers of epigenetic
signals may have a stronger impact earlier in life. Experimental and observational studies show that
maternal exposures during pregnancy and exposures during early childhood can modify the child’s
epigenome. These exposures include changes to diet, macro- and micro-nutrition, farm environments,
infections and microbes, animals, allergens, medications, pollutants, tobacco smoke and even maternal
stress [60, 75, 76]. In particular, folate and vitamin B12 are methyl donors that have a global impact on
DNA methylation [60]. Finally, genome associations have been identified for methylation patterns as
quantitative traits (meQTLs). These include the ORMDL3/GSDMB locus, where a SNP behaves as both an
eQTL and a meQTL [77], and others [66, 78, 79]. All these findings illustrate that certain perinatal
exposures can act through genetics and epigenetics to influence disease risk.

The microbiome
The microbiota is the community of microbes, including commensals and pathogens that reside within a
host or environment, while the microbiome is the genomic content that represents the microbiota. The
“microbiota hypothesis”, a modern reiteration of the hygiene hypothesis, suggests that perinatal microbial
exposure is vital to proper development of immune functions, especially of tolerance [80–82]. Microbial
exposures may modify allergy susceptibility by initiating different trajectories of immune development and
function [75]. Epigenetic changes may also be involved in this process, although the exact nature of these
changes remains unclear.

The primary interfaces for host–microbe interactions are the epithelial surfaces exposed to the external
environment, in the skin and respiratory and gastrointestinal tracts, so most studies on allergy
microbiomes involve sampling at one of these sites directly (biopsy or surface samples) or indirectly
(faecal or sputum samples). The gut is home to gut-associated lymphoid tissue, and its microbiome can
influence disease at other mucosal surfaces, such as the respiratory tract [83, 84]. The respiratory
microbiome may exert a direct influence on local inflammatory processes leading to asthma development [85].
The environmental microbiome may drive restructuring of host microbiomes, or modify allergy risk
by other means; this may be particularly relevant in relation to the protective effect of farming
environments [75]. Description of the microbiome relies mostly on quantification of DNA sequences
encoding the 16S ribosomal RNA (rRNA) gene, which is common to all bacteria but contains variable
regions used to differentiate taxa. The gene sequence is amplified using PCR and then examined using gel
electrophoresis, terminal RFLP, microarrays or sequencing. Recently, there has been a transition to deep
metagenomic sequencing, which captures the genomes of all organisms present in a sample, not just the
16S rRNA gene, and can be used to infer both taxonomic composition and function of the microbial
community.

Microbiome studies are complicated by the fact that host microbiomes can change with age, season, time
of day, site sampled on the host’s body and geography [86, 87]. However, a number of consistent findings
have been established for asthma and allergy. Features of the gut microbiome associated with allergy
include early-life reduction in microbial diversity; reduced populations of Bifidobacteria, Lactobacilli and
Bacteroidetes; and increased coliforms and specific Firmicutes (Staphylococci, Enterococci) [83, 84, 88].
Reversing the above changes, for instance by oral administration of certain Lactobacillus and
Bifidobacterium species, may offer some protection against both the initial development of allergy and
further exacerbations of atopic disease [80]. Within the airway microbiome, asthma development,
symptoms and exacerbation have all been associated with increased Proteobacteria populations (especially
Haemophilus, Moraxella, Streptococcus and Neisseria spp.), and reduced Bacteroidetes and Fusobacteria
commensals [80, 81, 84, 85, 89]. Remarkably, these associations begin during infancy: the detection of
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asthma-related bacteria in the first few months of life has been associated with developing allergic asthma
by primary school age [81, 83]. Although it is unclear whether microbial changes represent a cause or
effect of underlying immune dysfunction, there is evidence of altered gut and airway microbial
communities preceding allergic sensitisation [85, 90, 91]. Ultimately, these findings suggest two
independent processes at work: microbiota, especially of the gut, exerting systemic effects on immune
maturation; and microbiota causing local inflammatory processes at the sites they inhabit, including those
associated with asthma in the respiratory tract.

Other recent studies have uncovered the potential role for nonbacterial microbes, including viruses such as
human rhinovirus and respiratory syncytial virus, in causing early childhood wheeze and bronchiolitis that
often precedes full-blown asthma [75, 85, 92–97]. There is evidence for the role of rhinovirus (RV),
specifically RV-C, in causing severe respiratory illnesses that are associated with increased asthma risk later
in life. This is further supported by evidence that a genetic locus significant for childhood asthma,
CDHR3, modifies the binding and replication of RV-C, and hence infection susceptibility. The
pathophysiology behind the viral associations may be related to chronic airway injury due to recurrent
infection, possibly interacting synergistically with allergic mechanisms, to elicit and maintain sustained
inflammation. Microbe-specific systems such as the virome and the (fungal) mycobiome may also be
helpful towards understanding asthma pathogenesis. Microbiome modification and control of respiratory
infection risk (e.g. through vaccines or pre/probiotic supplementation) are possible avenues for future
investigation.

The exposome and environmental exposures
Researchers have frequently explored the relationship between environmental exposures and disease. The
“exposome” builds on this idea by encapsulating all environmental exposures that contribute to human
health and disease. The environmental microbiome, for instance, is just one type of exposure; the host
microbiome itself can be considered an exposure when describing microbes residing on the skin, or on
luminal surfaces of hollow viscera exposed to the external environment. It is difficult to measure all
exposures, let alone on a high-throughput scale, and there are other challenges related to correlation,
confounding and interaction amongst different exposures [98]. Instead, most studies have so far quantified
a limited set of relevant exposures via questionnaires and environmental sampling. NORTH et al. [99] is one
of the first studies to adopt an exposomic approach to examine multiple types of exposures
simultaneously, in their search for associations with childhood wheeze.

The environment can contribute to asthma and allergy pathogenesis in many ways. As mentioned in the
epigenomics section, these include mechanisms acting through diet and nutrition, exposures to pets and
animals, allergens, pollution, tobacco smoke and other chemical exposures. For some of these, it is possible
to measure and perform high-throughput analyses on proteomic and metabolomic data. Diet is one
example: a protective effect against allergy has been reported for polyunsaturated fatty acids (PUFAs)
found in fish oil, and for their metabolites [100]. Higher proportions of certain very-long-chain PUFAs in
plasma during childhood has been linked to reduced allergic disease in later adolescence [101]. There has
been slow adoption of omics-level analyses in food [102], and it remains controversial whether food and
dietary supplements have any impact on allergy or asthma risk (given the innumerable potential
confounders). However, in the future, it may be possible to scan the contents of an individual’s diet in a
high-throughput manner, construct a “foodome” (combining lipidomics and metabolomics), and search
for de novo associations with disease. Airborne pollutants may also be explored in a similar manner.

Environmental allergens can themselves be investigated by multiple omic approaches, in relation to
quantity of exposure, geography of exposure, and allergenicity of protein structures. For instance, studies
have identified that low environmental load of allergen can be a risk factor for disease [103, 104]. Timing
and route of allergen exposure may also be relevant: early introduction of solids, including peanuts, may
be protective, but only within a specific time window [105]. Furthermore, early exposure to peanut
allergen through the skin may promote sensitisation, while exposure through the gut may promote
tolerance [106]. Other studies have overlaid geographical maps of exposure with maps of disease, as has
been done for traffic-related air pollution and asthma [107]. Finally, it is still not clear why allergens
behave as allergens, or more specifically whether there is anything inherent in the molecular structure of
putative allergens that confer allergenicity. The term “allergome” is typically used to describe the
proteomics-based discovery of allergenic protein structures within individual allergens (see the section on
proteomics for discussion).

Occupational and chemical exposures comprise a less common, but well-known source of irritants and
allergens that cause asthmatic disease. In occupational health, the term reactive airways dysfunction
syndrome is often used to refer to bronchial reactivity without an initial latency or sensitisation period [108].
Examples of culprit chemicals include isocyanates, acid anhydrides, azodicarbonamide, dyes, enzymes and
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metals [109]. Potential mechanisms of disease are highly variable, and may involve type I (allergic)
hypersensitivity versus non-allergic/irritant, or type IV (T-cell-mediated) mechanisms; “inducers” versus
“inciters”; dermal versus respiratory sensitisers; and low molecular weight (hapten-like) versus high
molecular weight allergens [108]. It is likely that many culprits drive disease through mixed mechanisms.
An important note here is that a current lack of evidence for IgE-mediated mechanisms with a particular
chemical trigger does not rule out allergy to that chemical as a cause; limitations still currently exist in the
engineering of appropriate detection methods for chemical-specific IgE [110].

As alluded to previously, environmental exposures can act through interactions with host microbiome to
modify disease risk [75, 83, 84]. Maternal and perinatal exposure to rural environments confers some
protection, possibly due to contact with microbial products such as lipopolysaccharide, greater diversity in
microbial exposure or environmental modification of host microbiota. Caesarean deliveries and perinatal
use of antibiotics may increase risk for allergy, possibly by disrupting neonatal microbial colonisation. The
protective effect of oral probiotics with Lactobacilli and Bifidobacteria spp. has been reported, as noted
previously, and they may also provide cross-organ protection, reducing the incidence and severity of
respiratory infections [84]. The use of dietary fibre in prebiotics, with subsequent fermentation into
short-chain fatty acids, may protect from allergy via Toll-like receptor and G protein-coupled receptor
signalling or epigenetic modifications [80, 81]. Vitamin D has potential immune and
microbiome-modifying effects, and vitamin D deficiency is a suspected risk factor for allergy [111, 112].
Breastmilk contains immunoactive molecules and may alter gut microbiota composition [80]. Altogether,
these findings offer a glimpse into how multiple environmental exposures may interact in a complex
fashion to elicit disease.

Proteomics, metabolomics and lipidomics
The proteome is the repertoire of proteins produced by cells or tissues, reflecting the molecular effectors
and metabolic consequences of cell function. Common proteomic technologies can be grouped into
antibody-based (ELISA), peak-profiling mass spectrometry (MS)-based (“fingerprinting”), gel-MS based
(1D/2DG, 2D-DIGE) and liquid chromatography-MS based methods [113]. The general approach is to
perform coarse separation of digested proteins into “bands” or “spots”, and then further investigate each
spot by MS. The MS steps are often conducted in tandem (MS/MS) to achieve higher resolution. The
information gained from MS can then be used to identify the peptide or construct its amino acid
sequence. Sources of proteomic samples include sites of pathology such as the airway, in the form of
cellular or fluid content from bronchoalveolar lavage, induced sputum, biopsies or in vitro cell cultures; or
it may involve the usual blood or urine sample [114]. An accessible type of specimen unique to asthma
research is exhaled breath condensate (EBC), which provides information on volatile compounds released
from the airway.

In relation to asthma and allergy research, proteomic changes often depict nonspecific pathology, as in a
general elevated inflammatory state, as well as underlying pathological mechanisms. Therefore, recent
findings in proteomics mostly mirror transcriptomic changes, in that they reflect altered functions in
immunity, inflammation and antiprotease activity: affected proteins include defensins, α1 antitrypsin, α2
macroglobulin, SERPINs, S100-family proteins, apolipoproteins and complement proteins [113–116]. Of
particular note is a recent study by SCHOFIELD et al. [117], which combined sputum transcriptomic and
proteomics with airway histology and clinical features. They found that eosinophilic phenotypes were
associated with increased blood periostin and sputum haptoglobin, while neutrophilic phenotypes were
associated with increased S100A9 and MMP9. Interestingly, few recent studies have identified
proteome-wide significant changes to T2-related cytokines, although associations have been found within
low-throughput in vivo studies in the past [118]. It is plausible that, being upstream of signalling cascades,
these T2 cytokines are less apparent in proteome-wide analyses, where significant findings tend to be more
dominated by downstream proteins that have been amplified via the cascades.

Another important contribution of proteomics to allergy research is allergen detection and discovery
[119]. Studies have investigated a compendium of epitopes for aeroallergens such as house dust mite [120–
122] and plant pollen [123–125], and for food allergens in seafood and processed foods [119]; these have
served both to confirm existing epitopes and to identify new ones. Findings from these studies can be
applied to nonclinical settings, such as food processing and safety [119].

Metabolomics is the systems-level study of metabolites, the nonpeptide macromolecules representing the
substrates and end-products of cellular activity. The two main technologies of measurement used in
metabolomics are nuclear magnetic resonance, which provides a spectral fingerprint of a system’s
metabolite constituents, and MS. Like proteomics, most metabolomic studies focus on samples of blood
serum, EBC and urine from asthmatic patients [126–128]. Lipidomics is a subset of metabolomics
specifically dealing with lipid molecules, and lipidomic studies have shown that allergic disease is typically
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associated with elevation of arachidonic acid metabolites belonging to the lipoxygenase pathway, such as
leukotrienes [129, 130]. Metabolomic associations with asthma involve immune and inflammatory
functions, oxidative stress and hypoxia, cellular energy homeostasis and lipid metabolism pathways [127].
These associations seem to reflect general biological stress or inflammatory pathology, rather than specificity
for allergy or asthma. However, predictive and discrimination models based on metabolomic findings have
shown some promise [127]. Ultimately, as was the case for transcriptomics, proteomics and metabolomics
are being used to identify potential biomarkers to screen for asthma and stratify into asthma subphenotypes.
Additionally, in line with developments towards integrating multiple omics: proteomic, metabolomic and
lipidomic methods may be applied not just to host samples, but also to environmental samples.

The phenome and physiome
Phenomics is a broad term encompassing all physical or biochemical traits (phenotypes), observable in
cells or individuals, that reflect states of disease or health (“physiome”). In the case of allergy and asthma,
possible phenotypes include cell types based on morphology and response (immunophenotyping); clinical
biomarkers, such as antibody assays and cell counts; and the extensive physical manifestations of disease,
embodied in clinical history, symptoms and signs and investigation results. These traits may be quantified
and described in detail, although not necessarily using high-throughput technologies. Phenotypic traits of
interest may also include nondisease states, such as clinical remission, and traits that vary with age.
Integration with other omics-based datasets, and incorporation of time scales into analyses, may yield
further insight as to how such resilience against asthmatic disease is conferred.

Phenome-wide association analyses, where large sets of traits are screened for enrichment of allergy-related
genetic loci [131, 132], have been performed in the past, but have yet to gain widespread popularity.
Phenomes and phenotypes can also be analysed by machine learning, whether it be comparison of known
phenotypes (via supervised classification) or construction of new phenotypes from omic or non-omic data
(via unsupervised cluster analysis). This is discussed in further detail later.

The “immunome” is a subset of the physiome that is highly relevant to allergy, and where
high-throughput technologies play a major role. Immunomics broadly describes the systemic
quantification of immune function by examining immune cell populations and expression of immune
mediators. It may use immunoglobulin [133–135] and cytokine (proteomic or transcriptomic) arrays [136,
137] to quantify immune responses such as sensitisation, in vivo or in vitro. It can also involve leukocyte
immunophenotyping and high-dimensional or mass cytometry [138–141]. The immunome is complex
and varies dramatically by sampled immune cell type, tissue or organ, age and timing of sampling,
especially before and after sensitisation. Using these types of data, a number of recent studies have begun
exploring the “core immune signatures” of newborn infants and adults alike [142–144]. Although it is well
known that allergy is a T2-driven phenomenon, it is still not clear how all the components interact to
generate disease, nor is it clear how heterogeneity in disease or health is explained by immunome
heterogeneity. Furthermore, the nonallergic contributions of asthma are not well understood, and it is
unclear how T2 and non-T2 (particularly T1 and Th17/ILC3) mechanisms interact to generate the
spectrum of disease. Future studies may be able to shed light on this.

One major aspect of human physiology that has a known impact on asthma risk and progression is sex.
There are clear differences between males and females in terms of the development and physiology of the
immune [145] and respiratory systems [146]. During early childhood, males have a higher incidence of
asthma or wheezing illness than females; this switches during and after adolescence [147]. Pregnancy in
females can often exacerbate asthma symptoms, with partial resolution postpartum. It is likely that
hormonal changes during these life phases influence these changes in disease risk. Current evidence
suggests that ovarian hormones and oestrogen-mediated signalling promotes both Th2-related and
Th17-related inflammation, while testosterone is protective against Th2-mediated inflammation [147].
While existing studies already account for sex and gender differences as an important covariate or cofactor,
future studies may further explore sex interactions with immunomics, in particular, investigating how sex
hormones modify the function of both adaptive and innate immune cells.

Integration of omics data
Following our overview of the omics, we now discuss common techniques used to integrate and interpret
omics data in allergy and asthma research.

Exploring intra- and inter-omic relations
To understand disease pathogenesis, it is natural to compare findings across different omics, and construct
a multi-omic model of pathophysiology that links these various elements together. This may be a simple
sequential model of causality, or a complex network of interacting components. Many studies on omic
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associations with allergy and asthma also search for inter- and intra-omic relationships. Relationships can
take the form of direct associations, where one entity behaves as a trait for another, or an interactive effect
between two entities in relation to a third entity as the trait of interest. The study of these relationships is
the crux of modern systems biology.

Genomics, being the most studied system in allergy and asthma, features extensively in intra-omic and
inter-omic analyses. GWAS can be found not only for clinical phenotypes (e.g. presence of allergic disease)
as traits, but also for expression of transcripts (eQTL analyses), epigenetic markers (meQTLs) and
intermediate phenotypes such as microbial exposures and immunomes. Recently, there has been a
concerted move towards integrative genomics and genetic effects on gene expression are a pervasive
component of modern association studies, in the form of mandatory genome-wide eQTL analyses or
targeted measurements of gene transcripts [74]. Also coming into vogue is the use of Mendelian
randomisation, a technique which uses genomic information as instruments to infer causal links between
one trait or phenomenon and another, based on the assumption that allelic genotypes are randomly
assigned as they are passed from parent to offspring [148]. The traits being linked may themselves be
related to gene loci or expressed genes [149].

Analyses for interactive effects with other omics also feature heavily in allergy genomics. It is unlikely that
genetic and environmental factors act independently in conferring risk, so modern genomic studies often
include interaction terms with exposure variables. Scientists have explored interaction effects on asthma
susceptibility between genetics and exposures such as air pollution and tobacco smoke [150, 151]. Another
example is the impact of allergen exposure and genetics on immune cell gene expression [152]. Interaction
analyses also extend beyond environmental effects. Gene–ethnicity interaction has been investigated via
admixture mapping [10]. Genetic–epigenetic interactions have been reported; some genome-wide
significant loci (e.g. IL4R) may interact with nearby epigenetic signals to alter disease risk [65]. While
investigation of gene–gene interaction (epistasis) is of intense interest, the overwhelming number of active
genes in the human genome means that such analyses have a large statistical burden and hence remain
difficult. Therefore, gene–gene interaction studies are so far limited to a few selected genes or SNPs.
Polygenic risk scores tend to employ additive linear models that do not reflect epistatic effects, and it
remains a challenge to integrate these in an accurate manner. Finally, interactive effects may be explored
by means beyond using interaction terms in regression models, for example, eQTL-weighted GWAS have
been reported [153].

Given the strong links between environmental factors and asthma, interactions with environment
exposures have been explored to a degree. Importantly, prominent gene–environmental interactions have
been observed with glutathione S-transferase variants impacting on susceptibility to environmental sources
of oxidative stress, such as air pollutants [154], passive exposure to tobacco smoke [155] and isocyanate
[156, 157], as well as subsequent asthmatic disease [154, 158]. Similar interactions may exist for respiratory
infections, given that infection and the subsequent immune-inflammatory reaction are also sources of
oxidative stress. In addition, microbial and pathogen exposures have been linked to differential gene
expression, for instance, viral infections are associated with changes to airway epithelial transcriptomics in
asthma [159, 160]. Unsurprisingly, the exposome and microbiome have also been linked to epigenetic
changes, and the various exposures are intricately entwined in complex interactions. For instance, a recent
study has looked at the interaction between air pollution and the allergenicity of ragweed pollen [161].
Another recent study has identified that maternal phthalate exposure may promote allergy in subsequent
generations via epigenetics [162]. Other examples concerning environmental interactions with diet and
microbiome have already been discussed.

Finally, a common application of integrative omics is the use of gene ontology analysis to annotate
discovered genes from genomic, transcriptomic or epigenomic analyses [163]. This makes use of a
pre-curated database of functional annotations for known genes, based on existing literature, to segregate
discovered genes into groups or pathways with shared functions. An example is the Gene Ontology
Consortium [164]. These databases of functional annotations convey phenomic information, where cell
phenotypes, functions and behaviours are organised into discrete categories. In doing so, one aims to
condense diverse genome-wide findings into concise summaries of biological function that may be easier
to interpret when building a conceptual model of pathophysiology. Similar annotation analyses exist for
proteomics [165, 166]. A limitation of such techniques is that the annotations may not always be certain,
reliable or up-to-date, and can often be vague or uninformative.

Inter- and intra-omic relationships may be explored either by low-throughput pairings, or by
high-throughput assessment of larger networks [167, 168]. However, especially with the latter, it may be
difficult to account for noncausal correlations or confounders. For example, despite the hygiene
hypothesis, low socioeconomic status and impoverished environments remain risk factors for the
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development and severity of asthma [84]. This may be due to confounding factors that coexist with
poverty, including urbanised environments, exposure to allergen and pollutants, dietary intake and access
to healthcare. There is no doubt that modifiers of allergy risk may co-occur, but whether this represents a
causal link is another matter. Methods such as Mendelian randomisation (described earlier) may be used
to disentangle this, but one must be wary of violating the numerous assumptions that underlie Mendelian
randomisation. In addition, given the high dimensionality of inter- and intra-omic analyses, dimension
reduction and machine learning may be used instead to identify potentially robust signals of relevance to
pathogenesis.

Machine learning, dimension reduction and clustering
Machine learning is a set of methods that use computing to learn and formulate solutions from supplied
data, with or without explicit human input. It is already in common use with various biomedical and
ecological applications [169–171]; however, it is particularly useful when dealing with complex,
high-throughput and multidimensional data, especially in cases where pre-existing human knowledge may
be unavailable or insufficient to decipher the data. Machine learning approaches typically involve iteration,
where an algorithm repeatedly refines a model based on observed data until a metric of model quality (e.g.
objective/cost/loss function) satisfies a particular threshold. Applications of machine learning in
biomedicine typically involve the exploration of data structure, or generating predictive or explanatory
models of biological systems.

Cluster analysis and classification are methods used to subset data samples or individuals into different
groups or categories, thus giving a summary of data structure. Such methods typically employ machine
learning at the most fundamental level: for instance, hierarchical clustering is an iterative process where
the “objective function” would be the minimisation of within-cluster similarity and/or maximisation of
between-cluster dissimilarity. There is usually a subtle distinction between clustering and classification:
cluster analysis is a data-driven approach, where omic data is used to generate clusters in an unsupervised
fashion. The clusters can then be interpreted for hypothesis generation and testing. Conversely,
classification is a hypothesis-driven approach: known phenotypes or pre-curated categories are used to
determine a model of classification based on training data, which can then be applied to other datasets, or
examined to look for further biological associations (figure 3).

A drawback of clustering and classification (as for other applications of machine learning) is that there is
little consensus or standardisation of optimal methods, although there are certainly favoured approaches
for each problem. In addition, they may be intimidating for the regular clinician or biologist to adopt, and
choice of method often depends on a specialist understanding of nuances in the data. As an example:
when performing cluster analysis, many decisions need to be made prior to and during the procedure.
This includes how to deal with missing data; select the variables or “features” for clustering; scale or
normalise features; choose the algorithm to do the actual clustering; pick the number of clusters; control
for overfitting; and validate or replicate results [172]. It is not necessarily clear what the best choice is for
any of these decision points.

In exploring the correlation structure and confounders in a dataset, principal components analysis or
similar methods can be used to transform the dataset into uncorrelated variables or “principal
components”. In doing so, we can observe which of the original variables describe similar information (i.e.
are highly correlated with each other), and by plotting principal components, we can visualise the data in
a way that maximises variability between samples or variables. By condensing our data to a limited
selection of principal components, we can reduce the number of dimensions and simplify the input
features for subsequent clustering or classification [173]. Feature selection can be limited to a single omic
entity, or cover multiple omics simultaneously, depending on the question asked.

Cluster analysis involves separating samples in a dataset into discrete groups (clusters) based on what can
be learnt from data structure, without specifying training examples for each group [172, 174]. Its objective
is to minimise intragroup differences and maximise intergroup differences. Measures of difference or
dissimilarity may be distance- or correlation-based. Common clustering techniques include hierarchical
clustering, medoid-based methods, and latent variable modelling. Cluster analysis allows the identification
of homogeneous groups within a heterogeneous dataset, and simplify analyses to comparisons between
clusters rather than across entire cohorts. Clustering can also expose confounders without explicit
adjustment for correlation, especially if clustering is “guided” by cosegregating omic variables. Using
molecular omic-based features, cluster analysis may allow us to determine endotypes (subtypes of disease
or health states) by common biomolecular interactions and pathophysiology [175]. These can be compared
with known phenotypes to explore how variation in pathophysiological mechanisms are linked to variation
in disease manifestations. In addition, cluster analysis can be applied to phenome data to deal with
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heterogeneity in phenotypes. Using “cleaner” subphenotypes for association analyses may improve the
power and specificity of subsequent findings.

Classification methods determine a statistical model or decision-making algorithm that allocates
individuals of a training dataset into known groups (classes) [172]. The learnt model or algorithm can
then be applied to other test datasets for classification into classes. Methods include regression analysis,
discriminant analysis, support vector machines and partitioning or decision trees. The objective of
classification varies with the method, but mainly involves achieving the “best fit”, minimising differences
between predicted and actual class allocation for the training dataset, without compromising
generalisability to external datasets. Classification can be used to design diagnostic or risk stratification
algorithms from an omic dataset. Each sample is labelled as one of a predefined set of phenotypes (e.g.
allergic versus nonallergic asthma, eosinophilic versus neutrophilic, severe versus nonsevere), then the
algorithm seeks biomolecular or clinicophysiological features that best define the phenotype [176, 177]. In
the absence of predefined phenotypes, clustering and classification may be combined: clusters are
generated based on a training dataset, then a classifier is devised which can classify test datasets into the
discovered clusters.

Both cluster analysis and classification have been used extensively in asthma research. Major findings from
such analyses include the discovery and characterisation of different subsets of childhood and adult
asthma. Childhood wheeze has been categorised, by both traditional and machine-learning approaches,
into persistent atopic wheeze of early onset, transient remitting viral wheeze, and a mixed atopic/nonatopic
phenotype of variable onset [178–180]. Atopic wheeze appears to be characterised by Th2 activation, early
sensitisation to allergens, greater severity of respiratory disease, greater likelihood of persistence to
full-fledged allergic asthma and concurrence of other atopic diseases. In terms of adult asthma, there are
subtypes based on lung function [181], as well as atopic, nonatopic, mixed and other phenotypes [175].
Eosinophilic, neutrophilic and paucigranulocytic airway inflammation can be distinguished from sputum
samples, and accompanying transcriptomic, proteomic and immunomic data can provide some insight
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FIGURE 3 Data-driven versus hypothesis-driven machine learning for integration of omic data. a) Data-driven (unsupervised) cluster analysis used
to generate de novo groupings, reflective of shared pathophysiology (“endotypes”); b) hypothesis-driven (supervised) classification to compare
known phenotypes or endotypes, and to allow prediction of phenotype/endotype membership for additional samples. Diagrams are for illustrative
purposes only and do not convey real data.
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into underlying pathophysiology for each phenotype [43, 176, 182–184]. Neutrophilic, Th1/
Th17-dominant, and steroid-resistant asthma tend to co-occur, suggesting a common endotype. Asthma,
COPD and mixed asthma/COPD phenotypes have been explored [185]. Other studies have looked at
allergy phenotypes related to degree and pattern of allergic sensitisation (mono- versus poly-sensitised;
early- versus late-sensitised) [186, 187].

Clustering can be applied to other omic data, other than phenotype data. In TEO et al. [85], hierarchical
clustering was used to generate the microbiome profile groups which categorised the infant
nasopharyngeal microbiome into discrete clusters based on microbial abundance. This facilitated simpler
analysis and interpretation of otherwise complex data.

Some researchers have identified that membership within asthma clusters or subphenotypes change or
transition with age [188, 189]. This latter point highlights an ongoing challenge of subphenotyping
asthma: the fact that these phenotypes or clusters are inherently unstable, and may change with age
complicates post hoc analyses. To address this, clustering can be applied in a time-dependent manner:
several research groups have used techniques (e.g. latent transition analysis) that leverage longitudinal data
to model transition probabilities between clusters at different time points [189–191]. Such methods reveal
which asthma phenotypes are inherently stable or unstable; at a cursory glance, it appears that early-life
atopy tends to correlate with entrenched asthma in later life [191, 192]. Our own laboratory recently
employed a method of cluster analysis to derive trajectories representing distinct patterns of evolving
composition in the nasopharyngeal microbiome, and subsequently related these to asthma outcomes [193].

Network analysis
Network analysis is the use of networks to model and investigate systems. Networks are represented by
graphs consisting of nodes and edges, where nodes represent entities (e.g. biomolecule) and the edges
between nodes indicate relationships between entities (e.g. correlation, transition probability, molecular
interaction). Edges can be undirected (symmetrical) or directed (asymmetrical). Many types of network
analyses involve use of machine learning to generate a best-fitting network for a given dataset.

Networks are used to discover and visualise how different components in a system relate to each other,
whether they be abstract relations or actual molecular interactions. Bayesian network analysis involves
probabilistic modelling of a network, where edges are directed and annotated with a transition probability
from one node to another. This technique has been used frequently in asthma research, for instance to
identify candidate genes or SNPs associated with a bronchodilator response [194]; to quantify interactions
between measured pathophysiological variables related to asthma and allergy [195]; and to describe gene
regulatory networks using gene expression and GWAS data [196, 197].

Gene co-expression networks can be generated based on correlation between expression levels of different
genes. High correlation reflects genes that are co-expressed and hence may be co-regulated or share a
common biochemical pathway. Nodes represent genes, while edges represent correlation between them.
Furthermore, edges can be weighted by degree of correlation, as in weighted gene co-expression network
analysis (WGCNA); and highly connected or proximate subgraphs can be interpreted as gene modules of
functional importance. WGCNA has been used to identify co-expression networks underlying helper
T-cell responses to house dust mite stimulation [198], transcription networks in whole blood of asthmatics
[199], an IgE-signalling gene network associated with blood lipids [168], and co-methylation models that
reflect asthma endotypes [77]. MODENA et al. [46] identified that adults with severe asthma have
differential airway expression of gene modules corresponding to various biological functions, including
epithelial growth and repair, T1/T2 inflammation, neuronal and cilia functions. In particular, certain
subsets of severe asthmatics exhibited high expression of a T1-associated gene module, featuring core
genes STAT1 and PARP9 as well as other notable downstream proteins (e.g. interferon-γ induced
chemokines).

Other applications of network analysis exist. For example, PILLAI et al. [200] used bipartite network
analysis of cytokine expression to sort patients into distinct endotypes. HINKS et al. [195] constructed a
network of asthmatic individuals based on similarity in clinicophysiological parameters, then used
topological data analysis to assign nodes into clusters.

Finally, the term “network analysis” has been used to describe the application of genomic, transcriptomic
or proteomic data to existing networks stored in databases, specifically protein–protein interaction
networks, or networks representing biomolecular pathways. This is often done to generate subsets of the
original interaction networks, which are then examined for biological interpretation [201, 202]. Network
databases concerning other omics may be used to achieve a similar purpose (e.g. ingenuity pathway
analysis, InnateDB) [198, 203].

https://doi.org/10.1183/13993003.00844-2019 14

SYSTEMS BIOLOGY | H.H.F. TANG ET AL.



Mathematical modelling and prediction
The ultimate goal of integrative analyses is to generate models that reliably explain biological phenomena.
At the simplest level, identified omic associations can be used as biomarkers; to generate a model
consisting of the strongest biomarkers; and test the model on an external dataset. Many examples of such
an approach exist in the literature [128, 204, 205]. At a deeper level, multiple biomarkers (potentially
omic-wide) may be aggregated into a risk score, such as a genomic risk score [34]. The classification and
network models discussed previously are themselves mathematical models that cover multiple omic
domains and are testable on external datasets. In some of these applications, the models represent abstract
attributions of risk, and strive to be useful as clinical predictive tools, rather than to be accurate or
comprehensive representations of pathophysiology.

Another approach is to observe the consequences of perturbing a system, and infer normal function based
on the results [6]. These perturbations may include gene knockouts in animal or cell models [206],
neutralising antibodies or receptor antagonists to observe subsequent disruption of function [207, 208], or
simple observation of distribution of perturbations among cases versus controls in an observational study
(e.g. GWAS). Perturbations may be deliberate and controlled, targeting single genes or molecules; or they
may be randomised and wholesale, in keeping with the “systems” philosophy (e.g. random mutagenesis
studies in animal models). While such approaches have been employed extensively in biological research,
there have been few in-depth explorations of the consequences of perturbation at multi-omic levels, at least
in asthma research. Research groups with access to multi-omic datasets may be well positioned to begin
exploring such questions.

Based on existing knowledge from biomarker and perturbation studies, it may be possible to generate in
silico mathematical models to describe a complete biological subsystem in terms of components,
interactions and functions; and then describe their perturbation during disease. Modelling biological
systems in such a manner is challenging, as there are still many unknowns about its components.
However, this has not stopped researchers from trying; for example, HÖFER et al. [209] modelled the
IL4-dependent activation of GATA3 transcription in T2 development. Multi-scale approaches have been
used to describe multiple levels of biological function, from intracellular molecular processes, to cell-to-cell
communication, to organ-level function. For instance, LAUZON et al. [210] formulated a model of airway
hyperresponsiveness that accounted for actin–myosin mechanics, calcium signalling in airway smooth
muscle (ASM) regulation; mechanical forces of airway narrowing, and time-dependent distribution of
ASM contraction throughout the lung. Such approaches require knowledge of techniques that use
differential equations and state diagrams; a review of these approaches is provided elsewhere [211].
However, since such models are usually generated with data from in vitro systems or animal models, it
remains an ongoing challenge to test their relevance to in vivo human systems, and they should therefore
be treated with caution [212]. Upcoming projects such as the Human Cell Atlas [213] seek to address
some of these challenges, bridging the gap between cell biology and clinical medicine.

Pitfalls and challenges
Many challenges remain for systems biology. There are methodological challenges associated with
statistical power, even in large consortia. This is due to the sheer scale of omic data, and the number of
possible omic–omic comparisons or interactions. Next-generation technologies are becoming cheaper and
more efficient, but the volume of data they generate will continue to pose a statistical challenge.
Furthermore, the theory behind statistical and modelling methods still lags behind, and there is currently
little consensus on the optimal systems-level pipelines (e.g. RNA-seq). Although research groups have
recently been paying more attention to measurable environmental exposures in terms of their impact on
biological systems [99], the lack of environmental data, and the uncertainty about which exposures actually
matter, hinders examination of gene–environment interactions. Finally, even if we have a sufficiently
powered sample, there is a so-called Faustian bargain [214], where large sample sizes introduce
heterogeneity in cases and controls, thus obscuring findings. There is also a similar problem of the
winner’s curse [215], where significant results in a ome-wide study tend to exhibit larger effect sizes than
they are in reality.

Machine learning has been the go-to tool to handle phenotypic heterogeneity [216]. However, many
biologists and clinicians remain sceptical of it, with concerns about its hype or fad-like status, its opaque
“black box” nature, and the perceived lack of clear, consistent or immediately-applicable results [217].
MOORE et al. [181] were among the first groups to apply unsupervised cluster analysis to an adult asthma
cohort and identify distinct clusters. While the clusters themselves proved useful in describing disease risk
and severity profiles in the discovery population, subsequent studies attempting to replicate these clusters
in other cohorts have had mixed results [218]. Numerous other studies have identified different sets of
clusters based on different parameters and populations [219]. Results of machine learning methods may
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vary significantly depending on the nature of the input data, in terms of its quality, its relevance to the
disease being studied, its depth (resolution of data: categorical versus continuous) and breadth (single
versus multiple biological domains) and its balance (one domain prioritised over another versus all treated
equally). The variability in research outcomes may suggest to some that machine learning methods are
ultimately unreliable, but the field is still growing, and we argue that it simply illustrates the immense
complexity of biomedical systems, complexity that will remain impenetrable if we limit ourselves to
traditional expert-driven approaches. Unsupervised machine learning can serve as a springboard for future
hypotheses: LAZIC et al. [220] used unsupervised latent class analysis to identify a high-risk
multiple-sensitised subgroup, whose pathophysiological origins in early life may be worth exploring in
further detail with hypothesis-driven approaches. Ultimately, a balance of human expertise and machine
learning will be necessary to make the right decisions about data input and interpretation, and to
transform big data into biomedically relevant results.

Systems biology is multidisciplinary, and with this comes another challenge: communication and
collaboration between the various disciplines. There is often a conflict of priorities: a clinician might be more
interested in diagnosis, treatment and prognosis; an immunologist in the pathophysiology of allergy and
asthma; the biostatistician in making sure that the statistics and modelling are sound; and the bioinformatician
in generating clean data and writing problem-free code. There may be residual scepticism amongst some
biologists or clinicians who perceive systems approaches as “data fishing” [9]. There is some evidence to
suggest that multidisciplinary research projects have greater difficulty in getting funded or making a strong
scientific impact [221], and this may reflect the challenge of balancing multiple priorities and conveying
different perspectives to a broad audience, more so than the actual quality of the writing or research.

Multiple reviews have highlighted the ongoing inaccessibility of systems approaches to many biologists and
clinicians, and have recommended the creation of biologist-friendly tools [138, 211, 222]. While this may
indeed be helpful for common or simple analyses, there remains an ongoing need for specialist input in
developing and using new tools. Tools are only useful if applied correctly, and a research group should not
eschew specialist statistics or informatics input, simply to save costs or to keep things simple. Clearly,
systems biology is itself very diverse, covering multiple avenues of inquiry. Subspecialties are likely to
emerge within the field, each focusing on specific methodologies and their applications. It is likely that
there will be a demand for specialists and generalists alike, and the movement of tertiary institutions
towards incorporating mathematics, statistics and informatics in undergraduate biomedical courses is
certainly a welcome one.

Future directions and concluding statements
The recent developments in systems biology exemplify the global drive towards systems medicine [187,
223], and more broadly, “P4” medicine: predictive, preventative, personalised and participatory [224]. Our
ultimate objective is to achieve a critical level of biomedical understanding that permits development of
precise and personalised interventions for individual patients. The employment of systems biology in
asthma research represents the first step towards achieving this goal. Omics-level research allows us to
hone in on the myriad pathological changes that contribute incrementally to disease, and to attempt
reversal of these changes by addressing new therapeutic targets (supplementary table S1). Omics–omics
integration may enable us to connect these changes and visualise how they operate in each individual
patient. Another important contribution of systems biology is the ongoing clarification of the hygiene/
microbial hypothesis; the interaction between genetics and environment; and the future possibility of
environmental and host microbiota modification to manage or prevent disease. Therapies may be tailored
to individual patients depending on their underlying endotype or pattern of pathophysiology (e.g. anti-T2
biologic treatment for allergic asthma; combined anti-Th2/Th17 treatment for steroid-resistant disease),
though the exact implementation of such precision medicine remains a work in progress.

Worldwide, there has been a push by many groups to implement systems medicine, charting a path from
wet lab to dry lab to bedside. Large consortia, such as MeDALL (Mechanisms of the Development of
Allergy) in Europe [187] and STELAR (Study Team for Asthma Life Research) from the UK [216], have
been established specifically to record and integrate multi-omic data related to allergy and asthma, and
conduct well-powered systems-based analyses. Other smaller groups are also involved in similar research
via frequent cross-collaborations: these include the Childhood Asthma Study (Australia) [85], U-BIOPRED
(Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes; European) [225], Childhood
Origins of Asthma (USA) [93], Copenhagen Prospective Study on Asthma in Childhood (COPSAC;
Denmark) [14], Manchester Asthma and Allergy Study (UK) [186], Severe Asthma Research Program
(USA) [182] and others. In the modern age of systems biology, collaboration and data sharing is virtually
mandatory when it comes to uncovering complex associations such as gene–environment interactions.
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Overall, systems biology has yielded fruitful outcomes in asthma research, and promises to deliver more in
the future. At the moment, we are still a far way off from truly personalised medicine – being able to
predict with reasonable accuracy the disease or prognosis of an individual based on well-sampled data.
However, we can only expect the field to grow exponentially in the years to come.
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