Is gender inequity in ventilator management a “women’s issue”?

Marcus J. Schultz¹,²,³ and Christian Karagiannidis⁴

Affiliations: ¹Dept of Intensive Care Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands. ²Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands. ³Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand. ⁴Dept of Pneumology and Critical Care Medicine, Kliniken der Stadt Köln, Witten/Herdecke University Hospital, Cologne, Germany.

Correspondence: Marcus J. Schultz, Dept of Intensive Care, Amsterdam University Medical Centers, location Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands. E-mail: m.j.schultz@gmail.com

Caregivers involved in artificial ventilation need to pay more and special attention to females: due to their shorter height they are at higher risk of receiving non-protective ventilation, which may affect their outcomes http://bit.ly/2HbkG4n

Cite this article as: Schultz MJ, Karagiannidis C. Is gender inequity in ventilator management a “women’s issue”? Eur Respir J 2019; 54: 1901588 [https://doi.org/10.1183/13993003.01588-2019].

This single-page version can be shared freely online.

Artificial ventilation acts as a double-edged sword in patients with acute respiratory distress syndrome (ARDS). While maintaining oxygenation and unloading the respiratory muscles it may worsen lung injury, especially when the applied volumes are too large or when pressures become too high [1]. The results of the seminal ARMA trial, a clinical study in patients with ARDS comparing ventilation with a low tidal volume (V_t) to ventilation with a high V_t, convinced us that use of low volumes improves survival and shortens duration of ventilatory support [2]. The findings in a recently published meta-analysis, using individual patient data of patients with ARDS under ventilation with a low V_t recruited in nine investigations, made us think that ventilation with a low driving pressure (ΔP) may have additional protective effects [3]. A cut-off of 6 mL per kg of predicted body weight (PBW) for V_t, and of 15 cmH₂O for ΔP, are by now widely proposed as safety limits in patients with ARDS. We cannot think of any reason why a female lung would be different from a male lung, and therefore of no good reason for differences in these safety cut-offs between sexes.