Development and External Validation of 1- and 2- year Mortality Prediction Models in Cystic Fibrosis

Sanja Stanojevic^{1,2}, Jenna Sykes³, Anne L. Stephenson^{2,4}, Shawn D. Aaron⁵, G. A. Whitmore⁶

SUPPLEMENT

Study Population

Patient data are entered into the CCFR once a diagnosis of CF has been confirmed based on diagnostic guidelines (1) and after patient consent has been obtained. All 42 Canadian CF clinics submit data annually to the Registry and each CF clinic receives financial support from Cystic Fibrosis Canada dependent on data submission to the Registry. It is estimated that less than 1% of the Canadian CF population has declined consent to have their data captured in the Registry (personal communication with CF Canada). The frequency of CF in Canada as captured by national statistics was virtually the same as found in the Registry suggesting that the Registry captured most CF patients in the country. (12)

Description of Clinical Variables

Date of CF diagnosis, if missing, was imputed by assuming the date of diagnosis occurred 30 days after the date of birth.(2) Pancreatic status was defined by whether the patient had ever used pancreatic enzymes and was used as a proxy for functional impairment of the CFTR protein since many older patients were missing genotype classification. Lung function measurements FEV₁ and forced vital capacity (FVC) were converted to percent predicted values using the Global Lung Function Initiative (GLI) reference equations.(3) Extreme values of FEV₁ or FVC percent predicted that were clinically implausible (<8% or >150% predicted) were set to missing. The change in lung function was calculated as the log-relative decline in lung function since the preceding year if a decline has occurred and 0 otherwise. The log-relative decline is the natural log of the ratio of the current FEV₁ percent predicted to the previous measurement. If the preceding year's lung function was missing, the most recent lung function (up to a maximum of three years earlier) was used. Nutritional status was categorized as underweight (Body Mass

Index (BMI) < 18 kg/m²), overweight (BMI \ge 25 kg/m²) and normal weight (BMI \ge 18 and BMI $< 25 \text{ kg/m}^2$) according to World Health Organization (WHO) cut-offs for adults (4). For children, Centers for Disease Control and Prevention growth charts were used, as follows: underweight (BMI centile <12), overweight (BMI centile \geq 85), normal weight (BMI centile \geq 12 & BMI centile <85).(5) CF-related diabetes (CFRD) was defined by each clinic based on published consensus guidelines.(6) History of microbiological infections was categorized using a hierarchical approach: patients with a history of (1) Burkholderia cepacia complex, (2) Pseudomonas aeruginosa, and (3) neither B. cepacia complex nor P. aeruginosa infection. Once a patient was infected with B. cepacia complex the patient was assumed to be positive from that point forward, whereas infection with P. aeruginosa was categorized as positive/negative based on the culture results from the report year. Hospitalizations treated with intravenous (IV) antibiotics and home IV antibiotic courses were treated as separate variables. The vast majority of IV courses were administered in hospital, and it is likely that courses administered at home represent 'milder' events. Due to the retrospective nature of the analysis it was not possible to clearly distinguish these events. There also may be some overlap of these variables. The number of outpatient clinic visits per patient was recorded annually.

Model	Variable	One-year	Two-year
		Coefficients	Coefficients
Chronic Health	Intercept	5.702963	4.55962
Index			
	Male	-0.0162938	.3189947
	Log _e (FVC % Predicted/100)	0.7360137	.5809873
	Log _e (FEV ₁ % Predicted/100)	0.7899955	.8404154
	Underweight	-0.7302478	4187824
	<i>B. cepacia</i> complex	-0.4588687	9285728
	Age (in years)	-0.0398486	N/A
	# Hospitalizations in preceding	-0.2818584	N/A
	year		
Shock Index	Intercept	0.1146547	.1863934
	# Hospitalizations in preceding	-0.0792965	1263516
	year		
	1 year decline in lung function	-0.5616525	.1858131
	Log _e (FEV ₁ % Predicted/100)	0.2554754	.4353779
	Pancreatic Insufficient	0.6058589	.1927758
	CFRD	0.2340407	172767
	Age at CF diagnosis (in years)	0.0079757	.0012487

Table S1. Model Coefficients for the 1-year and 2-year models.

How to calculate the probability of survival at 1-year and 2-years.

Step 1: Sum the intercept and the products of the coefficients and values of the variables for each patient for the chronic health index. This sum is denoted by lnY.

Step 2: Sum the intercept and the products of the coefficients and values of the variables for each patient for the shock index. This sum is denoted by $ln\beta$.

Step 3: Exponentiate both lnY and $ln\beta$, i.e. $Y = \exp(lnY)$ and $\beta = \exp(ln\beta)$.

Step 4:
$$lnS = \frac{1}{(-1)*6} \left(\frac{1}{Y}\right)^{\beta} \left[\exp(\beta) - 1\right]$$

Step 5: Calculate $S_1 = \exp(lnS)$. This is the probability of survival at one year.

Step 6: To calculate the probability of survival at two years, we repeat Steps 1-5 to calculate S_2 using the two-year coefficients. Then, the overall probability of survival at two years is S_1*S_2 .

Example Calculations:

Table S2.	Baseline values for two	o patients – one at low	risk of death in	n one year, and	one at
high risk	of death in one year.				

Model	Variable	Low Risk Patient	High Risk Patient
	Age (years)	16	40.4
	Gender	Female	Male
	FEV1 %	47.4%	19.2%
Chronic	Predicted		
Health Index	FVC %	66.7%	25.7%
	Predicted		
	#	0	6
	Hospitalizations		
	in preceding		
	year		
	Underweight	No	Yes
	B. cepacia	No	Yes
	Complex		
	Age at CF	0.9 yrs	27.2 yrs
	Diagnosis		
	CFRD	No	No
	Pancreatic	Insufficient	Sufficient
Shooly Indon	Status	17 404	10.20/
Shock Index	FEVI %	47.4%	19.2%
	Predicted	00 50/	20.00/
	FEVI %	80.5%	20.0%
	Predicted in		
	preceding year	22 10/	0.80/
	in FEV1	55.1%	0.0%
	#	0	6
	^π Hospitalizations	0	0
	in preceding		
	vear		
Outcome	Status in one	Alive	Deceased
	vear		
	Status at two	Alive	N/A
	years		
	ln Y	4.18	-1.11
	Y	65.37	0.33
	ln β	0.24	-0.59
One-year	β	1.27	0.55
survival	ln S	-0.01	-2.45
	S	0.990	0.086

	ln Y	3.70	
	Y	40.45	
	ln β	0.15	
Two-year	β	1.16	
survival	ln S	-0.026	N/A
	S	0.975	
	Overall 2-year	0.965	
	survival		

To determine the probability of survival at one-year for the low-risk patient:

Step 1:

$$lnY = 5.702963 - 0.0162938 * (Male) + 0.7360137 * ln(FVC \% Predicted/100) + 0.7899955 * ln(FEV1 \% Predicted/100) - 0.7302478 * (B.cepacia Complex) - 0.4588687 * (Underweight) - 0.0398486 * (Age in years) - 0.2818584 * (# Hospitalizations in preceding year) lnY = 5.702963 - 0.0162938 * (0) + 0.7360137 * ln(66.7/100) + 0.7899955 * ln(47.4/100) - 0.7302478 * (0) - 0.4588687 * (0) - 0.0398486 * (16) - 0.2818584 * (0) lnY = 4.18$$

Step 2:

$$\begin{split} ln\beta &= 0.1146547 - 0.0792965*(\# Hospitalizations in preceding year) \\ &- 0.5616525[ln(FEV1 \% Predicted in Preceding Year \\ /100) - ln(FEV1 \% Predicted in current year/100)] + 0.2554754 \\ &* (ln(FEV1 \% Predicted in current year/100)) + 0.6058589 \\ &* (Pancreatic Insufficient) + 0.2340407*(CFRD) + 0.0079757 \\ &* (Age at CF diagnosis in years) \\ ln\beta &= 0.1146547 - 0.0792965*(0) - 0.5616525*[ln(80.5/100) - ln(47.4/100)] \\ &+ 0.2554754*(ln(47.4/100)) + 0.6058589*(1) + 0.2340407*(0) \\ &+ 0.0079757*(0.9) \\ ln\beta &= 0.24 \end{split}$$

Step 3:

$$Y = exp(lnY) = exp(4.18) = 65.4\beta = exp(ln\beta) = exp(0.23) = 1.27$$

Step 4:

$$lnS = \frac{1}{(-1)*\beta} \left(\frac{1}{Y}\right)^{\beta} [exp(\beta) - 1]$$

$$lnS = \frac{1}{(-1.27)} \left(\frac{1}{65.4}\right)^{1.27} [exp(1.27) - 1]$$

$$lnS = -0.00997$$

Step 5: S = exp(lnS) S = exp(-0.00997)S = 99.0%

Therefore, the probability of survival at one-year is 99.0%.

Step 6:

Repeat Steps 1-5 to calculate S₂:

Step 6_1:

$$lnY = 4.55962 + .3189947 * (Male) + .5809873 * (ln(FVC \% Predicted/100)) + .8404154 * (ln(FEV1 \% Predicted/100)) - 0.4187824 * (Underweight) - 0.9285728 * (B. cepacia Complex) lnY = 4.55962 + .3189947 * (0) + .5809873 * (ln(66.7/100)) + .8404154 * (ln(47.4/100)) - 0.4187824 * (0) - 0.9285728 * (0)$$

lnY = 3.70

Step 6_2 :

```
ln\beta = .1863934 - .1263516 * (\# Hospitalizations in preceding year) + .1858131
              * [ln(FEV1 % Predicted in Preceding Year
              (100) - ln(FEV1 \% Predicted in current year/100)] + .4353779
              * (ln(FEV1 % Predicted/100) + .1927758 * (Pancreatic Insufficient)
              - 0.172767 * (CFRD) + .0012487 * (Age at CF Diagnosis)
 ln\beta = .1863934 - .1263516 * (0) + .1858131 * [ln(80.5/100) - ln(47.4/100)]
              + .4353779 * (ln(47.4/100) + .1927758 * (1) - 0.172767 * (0))
              + .0012487 * (0.9)
 ln\beta = 0.15
Step 6_3:
Y = exp(lnY)
Y = exp(3.70)
Y = 40.45
\beta = exp(ln\beta)
\beta = exp(0.15)
\beta = 1.16
```

Step 6_4:

$$lnS = \frac{1}{(-1)*\beta} \left(\frac{1}{Y}\right)^{\beta} [exp(\beta) - 1]$$

$$lnS = \frac{1}{(-1.16)} \left(\frac{1}{40.45}\right)^{1.16} [exp(1.16) - 1]$$

$$lnS = -0.0258$$

Step 6_5: $S_2 = exp(lnS)$ $S_2 = exp(-0.0258)$ $S_2 = 97.4\%$

Step 6:

 $S_2 {}^*S_1 = 0.974 {}^*0.990 = 0.964$

Therefore, the overall probability of survival at 2 years is 96.4%.

Figure S1: Summary of Sensitivity Analyses

Figure S2: Goodness of fit for the un-weighted a) 1-year model and b) 2-year model for the combined health index and shock index. Both figures indicate good model fit as judged by comparison of the estimated probability of death and the actual deaths that were observed. The tracking of the two lines (actual and expected deaths) indicate good calibration; whereas the shape of the curve, the degree the curves bend towards the upper-left corner, indicates good predictive power.

Figure S3: Goodness of fit for UK dataset validation for the a) 1-year model and b) 2-year model.

1. Konstan MW, Butler SM, Schidlow DV, Morgan WJ, Julius JR, Johnson CA. Patterns of medical practice in cystic fibrosis: part I. Evaluation and monitoring of health status of patients. Investigators and Coordinators of the Epidemiologic Study of Cystic Fibrosis. Pediatric pulmonology. 1999;28(4):242-7.

2. Stephenson AL, Tom M, Berthiaume Y, Singer LG, Aaron SD, Whitmore GA, et al. A contemporary survival analysis of individuals with cystic fibrosis: a cohort study. Eur Respir J. 2015;45(3):670-9.

3. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324-43.

4. Organization WH. Body mass index classification Geneva, Switzerland [

5. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240-3.

6. Moran A, Hardin D, Rodman D, Allen HF, Beall RJ, Borowitz D, et al. Diagnosis, screening and management of cystic fibrosis related diabetes mellitus: a consensus conference report. Diabetes research and clinical practice. 1999;45(1):61-73.