IL-1 receptor blockade skews inflammation towards Th2 in a mouse model of systemic sclerosis

Anna Birnhuber1,2, Slaven Crnkovic1,2, Valentina Biasin2, Leigh M. Marsh2, Balazs Odler2,3, Anita Sahu-Osen2, Elvira Stacher-Priehse2,4, Luka Brcic2,4, Frank Schneider5, Nada Cikes6, Walter Klepetko7, Winfried Graninger8, Yannick Allanore9, Robert Eferl10, Andrea Olschewski1,2, Horst Olschewski11 and Grazyna Kwapiszewska1,2

Affiliations: 1Otto Loewi Research Center, Medical University of Graz, Graz, Austria. 2Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria. 3Clinical Division of Nephrology, Dept of Internal Medicine, Medical University of Graz, Graz, Austria. 4Institute of Pathology, Medical University of Graz, Graz, Austria. 5Dept of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA. 6Division of Clinical Immunology and Rheumatology, University Hospital Centre Zagreb, Zagreb, Croatia. 7Dept of Thoracic Surgery, Medical University of Vienna, Vienna, Austria. 8Division of Rheumatology and Immunology, Medical University of Graz, Graz, Austria. 9Dept of Rheumatology, Cochin Hospital, Paris Descartes University, Paris, France. 10Institute of Cancer Research, Medical University of Vienna, Vienna, Austria. 11Division of Pulmonology, Medical University of Graz, Graz, Austria.

Correspondence: Grazyna Kwapiszewska, Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftungtalstrasse 6, 8010 Graz, Austria. E-mail: grazyna.Kwapiszewska@lvr.lbg.ac.at

ABSTRACT The interleukin (IL)-1 family of cytokines is strongly associated with systemic sclerosis (SSc) and pulmonary involvement, but the molecular mechanisms are poorly understood. The aim of this study was to assess the role of IL-1α and IL-1β in pulmonary vascular and interstitial remodelling in a mouse model of SSc.

IL-1α and IL-1β were localised in lungs of SSc patients and in the fos-related antigen-2 (Fra-2) transgenic (TG) mouse model of SSc. Lung function, haemodynamic parameters and pulmonary inflammation were measured in Fra-2 TG mice with or without 8 weeks of treatment with the IL-1 receptor antagonist anakinra (25 mg·kg−1·day−1). Direct effects of IL-1 on pulmonary arterial smooth muscle cells (PASMCs) and parenchymal fibroblasts were investigated in vitro.

Fra-2 TG mice exhibited increased collagen deposition in the lung, restrictive lung function and enhanced muscularisation of the vasculature with concomitant pulmonary hypertension reminiscent of the changes in SSc patients. Immunoreactivity of IL-1α and IL-1β was increased in Fra-2 TG mice and in patients with SSc. IL-1 stimulation reduced collagen expression in PASMCs and parenchymal fibroblasts via distinct signalling pathways. Blocking IL-1 signalling in Fra-2 TG worsened pulmonary fibrosis and restriction, enhanced T-helper cell type 2 (Th2) inflammation, and increased the number of pro-fibrotic, alternatively activated macrophages.

Our data suggest that blocking IL-1 signalling as currently investigated in several clinical studies might aggravate pulmonary fibrosis in specific patient subsets due to Th2 skewing of immune responses and formation of alternatively activated pro-fibrogenic macrophages.

Copyright ©ERS 2019. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0.