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Simulation illustrating the relationship between airflow obstruction and flow shape 

 

Figure S1: The flow-time profile (“flow shape”) is theoretically a manifestation of the degree of mismatch between the actual ventilatory 
flow and the intended airflow or ventilatory drive, i.e. flow:drive. (A) Two computer simulations are presented. In both “patients”, the same 
progressive rise in ventilatory drive was provided (diaphragm EMG). The “patient” with moderate collapsibility (black, top) has an airway that 
permits twice the airflow of the “patient” with severe collapsibility (red, middle), see airway flow-pressure profile in Panel B. Note that a more 
collapsible airway (black vs red) and increased ventilatory drive both promote more apparent flow limitation (flattening and scooping of inspiratory 
flow, elongation of inspiratory time). Note that the exact same flow shape occurs whenever moderate collapse is exposed to twice that of the 
severe collapse (flow shapes “a”, “b”, “c”). In each case of identical shape, there has been no change in the ratio of ventilation to ventilatory drive 
(flow:drive = 47% in “a”, 23% in “b”, 14% in “c”), hence no change in manifest flow shape, see Panel C for scaled and overlaid signals. 

 

Model details pertaining to Figure S1 are as follows: The equation of motion of the respiratory system was a 

standard lumped resistance and compliance model, modified to include a nonlinear resistance consistent with 

flow-limitation (see Panel B); respiratory system compliance = 80 ml/cmH2O, resistance (linear portion at low 

flow) was based on a time constant of 0.6 s, peak inspiratory muscle pressure (shown as “diaphragm EMG”) 

was 8 cmH2O at baseline. A short time-constant for pharyngeal collapse (30 ms) was incorporated to mimic 

physiological signals. Greater collapsibility was simulated by reducing the maximum inspiratory flow while 

maintaining the shape of the pressure-flow profile constant. 
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Calibration of diaphragm EMG to measure ventilatory drive  

To calibrate intraesophageal diaphragm EMG swings (EMGdi, units of μV) to reflect intended ventilation or 

ventilatory drive (units of L/min) i.e. the ventilation expected based on neural output when the respiratory 

mechanics are normal for each individual, we identified suitable reference breaths throughout the night as 

follows: Breaths during wake or arousal (at least two breaths away from scored sleep) were selected. Breaths 

were excluded if they were within the margins of a scored respiratory event or had a reduced ventilation (more 

than 30% below local average). We expected that ventilation and ventilatory drive were equal at these times. 

The use of wakefulness levels to calibrate drive and define normal respiratory mechanics means that any 

baseline non-sleep-related mechanical deficits can be avoided in the measurement, i.e. only a sleep-related 

mismatch between flow and drive will be captured by our gold standard. 

For each breath, we calculated the ratio of the ventilation (VE) to EMGdi (root-mean-squared diaphragm EMG 

signal, 160 ms smoothing; EMG swings (in μV) were taken as the peak minus pre-inspiratory values, and 

normalised to yield values in L/min using automatically-identified reference breaths defined above), given by 

G=VE:EMGdi (units of L/min/μV). Rather than define a single average value of G for calibration of diaphragm 

EMG, we considered that in some circumstances the diaphragm EMG signal amplitude may change over time. 

Thus, a moving-time average of G was calculated to handle possible overnight calibration drift; a weighting 

approach allowed the moving-time-averaged calibration factor to be determined predominantly by local 

calibration data where available. EMGdi for each breath was multiplied by G to yield ventilatory drive (units 

of L/min).  

Nasal pressure linearisation 

The nasal pressure signal was linearised using a power-law transform. Traditionally, nasal pressure has been 

linearised to correspond more closely with relative changes in (gold-standard) pneumotachograph flow using 

an “exponent” of ½, i.e. the square-root transform [1-3].  However, it is evident from the original data, that 

the square-root transformation is an excessive approximation [1, 2]. In our recent studies, we instead advocated 

using a transform that was more subtle (i.e. power of ⅔) to obtain a closer match to data from the 

pneumotachograph ventilation signal [4, 5].  

In the current study we measured gold-standard oronasal pneumotachograph flow and nasal pressure in 17 

patients simultaneously, via a modified cannula referenced to mask pressure to reflect the clinically-available 

intranasal pressure signal; DC-coupled. Individual breaths were identified and segmented by an automated 

computer algorithm. Here we formally assessed several nasal pressure transforms: ½ (square-root), ⅔, ¾, and 

1 (untransformed) and compared magnitude of ventilation (tidal volume × respiratory rate) on each breath 

(normalised to the local average) to gold standard values. Data from all patients were pooled. Results are 
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shown in Figure S2. We found that linearisation was best with ⅔ exponent, illustrated by greater symmetry 

around the line of identity; this exponent no longer led to the systematic overestimation of large breaths and 

underestimation of small breaths like the untransformed signal (Figure S2D), but also did not yield systematic 

underestimation of large breaths and overestimation of small breaths as with the square-root transform (Figure 

S2A).  

 

Figure S2. Nasal pressure transforms for clinical estimation of ventilation. Gold standard breath-by-breath ventilation in 17 patients (normalised 
to eupnoea i.e. local average in 3 min period) is compared to values estimated using nasal pressure. Values of 1 denote eupneic (average) 
ventilation. Transforms using the following exponents are shown (A) ½ (square-root), (B) ⅔, (C) ¾, and (D) 1 (untransformed). Note the improved 
symmetry about the line of identity (as shown by dashed line) with the ⅔ transform in (B). The small red squares are shown to illustrate systematic 
discrepancies between measures (or lack thereof); median values are shown for large (>1.3×eupnoea) and small (<0.7×eupnoea) breaths. Note 
the systematic overestimation of small breaths (bias >1, where bias = nasal pressure ventilation / pneumotach ventilation), and underestimation 
of large breaths (bias<1) in panel A, with the traditional square root transform. R2 = coefficient of determination. 

  



- S5 - 

 

Initial feature list 

We identified 85 features from the literature and our own development that met the following criteria:  

• Features represented shape aspects of pharyngeal airflow obstruction or flow limitation including: 

flattening, asymmetry, scooping, altered ratios of inspiratory/expiratory durations and volumes, 

irregularities, fluttering. 

• Features were breath independent, i.e. stand-alone values could be obtained from a single breath 

without context, and do not rely on differences with respect to neighbouring breaths or selected 

reference breaths in the same individual. Thus we did not include features such as the change in 

inspiratory time relative to normal reference breaths [6]. 

• Features were amplitude independent, i.e. a breath that was simply larger but had the same shape would 

yield the same exact features, thereby enabling application in cases of un-calibrated flow signals.  

• Features were timing independent, i.e. a breath that was simply slower and longer would yield the same 

features, thereby having equal potential application in cases where breathing is faster e.g. children. 

Accordingly, features from the “Asymmetry” and “Flutter” categories used uniform time spacing, to 

ensure timing independence. The time series for each inspiratory breath was resampled to 200 data 

points, while the time series for each expiratory breath was resampled to 250 data points prior to 

determination of feature values. 

• Features consistently yield real values, i.e. yield “indeterminant” values <0.1% of the time.  

• Features can be easily and rapidly computed without comparison to a template, lookup table, database, 

neural network or otherwise. 

At the outset of the current investigation, we recognised that detection of appropriate inspiratory and 

expiratory start and end times could play a major role in determining values from each feature. Two 

approaches were employed: 1) our “original” in-house algorithm for detecting start and end times of breaths 

based primarily on volume maxima and minima, and 2) a modified timing algorithm that separately identifies 

the start and end times of inspiration and expiration based on the periods where 95% of the volume 

inspired/expired is observed, referred to as “transition” timing [7]. Based on preliminary univariate analysis 

indicating non-linear relationships, transformed features (square and square-root) were included as additional 

candidate features for selection. 
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Table S1. List of 85 flow-shape features used throughout the study 

No. Feature Label Description Ref. 

Bivariate (R2) vs. flow:drive Pnasal  vs. 
Pneumotach. 

R2 (bias) 
Pneumotach. 
 

Pnasal 

Flattening (N=28)    

1 MIF_PIF  mean Insp Flow/Peak Insp Flow ¶[8, 9] 0.46  [O, 2] 0.31 0.73  (0.96) 

2 Ali_InspFlat AUC of abs(Insp Flow(Insp Time(0.1 to 0.9)) - MIF) ¶[9, 10] (-) 0.29  [T, 2] 0.25 0.65  (1.01) 

3 Ali_ExpFlat  AUC of abs(Exp Flow(Exp Time(0.2 to 0.8)) - MEF) ¶[9, 10] 0.28  [T, 1/2] 0.23 0.6  (0.99) 

4 Ali_InspExpFlat Insp flat index / Exp flat index [9] (-) 0.3  [T, 1/2] 0.23 0.32  (1.01) 

5 AA_InspFlat9020 sum(Insp Flow>0.9)/sum(Insp Flow>0.2); [11] 0.4  [O, 1/2] 0.30 0.68  (0.96) 

6 AA_InspFlat8020 sum(Insp Flow>0.8)/sum(Insp Flow>0.2); [11] 0.42  [O, 1] 0.30 0.72  (0.97) 

7 AA_InspFlat7020 sum(Insp Flow>0.7)/sum(Insp Flow>0.2); [11] 0.42  [O, 2] 0.30 0.73  (0.96) 

8 AA_InspFlat6020  sum(Insp Flow>0.6)/sum(Insp Flow>0.2); [11] 0.42  [O, 2] 0.31 0.71  (0.98) 

9 AA_InspFlat5020  sum(Insp Flow>0.5)/sum(Insp Flow>0.2); [11] 0.41  [O, 2] 0.30 0.65  (0.98) 

10 AA_InspFlat90Ti  sum(Insp Flow>0.9)/sum(Insp Flow>0); [11] 0.42  [O, 1/2] 0.30 0.68  (0.96) 

11 AA_InspFlat80Ti sum(Insp Flow>0.8)/sum(Insp Flow>0); [11] 0.43  [O, 1] 0.30 0.73  (0.97) 

12 AA_InspFlat70Ti sum(Insp Flow>0.7)/sum(Insp Flow>0); [11] 0.43  [O, 1] 0.30 0.73  (0.98) 

13 AA_InspFlat60Ti  sum(Insp Flow>0.6)/sum(Insp Flow>0); [11] 0.44  [O, 2] 0.31 0.73  (0.97) 

14 AA_InspFlat50Ti sum(Insp Flow>0.5)/sum(Insp Flow>0); [11] 0.43  [O, 2] 0.30 0.69  (0.98) 

15 AA_ExpFlat9020  sum(Exp Flow>0.9)/sum(Exp Flow>0.2); [11] 0.34  [O, 1] 0.24 0.49  (0.95) 

16 AA_ExpFlat8020  sum(Exp Flow>0.8)/sum(Exp Flow>0.2); [11] 0.35  [O, 1] 0.25 0.49  (0.99) 

17 AA_ExpFlat7020 sum(Exp Flow>0.7)/sum(Exp Flow>0.2); [11] 0.34  [O, 1] 0.26 0.5  (1) 

18 AA_ExpFlat6020 sum(Exp Flow>0.6)/sum(Exp Flow>0.2); [11] 0.33  [O, 1] 0.26 0.52  (1.01) 

19 AA_ExpFlat5020 sum(Exp Flow>0.5)/sum(Exp Flow>0.2); [11] 0.33  [T, 2] 0.24 0.36  (1) 

20 AA_ExpFlat90Te  sum(Exp Flow>0.9)/sum(Exp Flow>0); [11] 0.35  [O, 1/2] 0.24 0.55  (0.98) 

21 AA_ExpFlat80Te sum(Exp Flow>0.8)/sum(Exp Flow>0); [11] 0.35  [O, 1/2] 0.25 0.59  (1) 

22 AA_ExpFlat70Te  sum(Exp Flow>0.7)/sum(Exp Flow>0); [11] 0.35  [T, 2] 0.24 0.56  (0.98) 

23 AA_ExpFlat60Te  sum(Exp Flow>0.6)/sum(Exp Flow>0); [11] 0.35  [T, 2] 0.24 0.55  (0.99) 

24 AA_ExpFlat50Te sum(Exp Flow>0.5)/sum(Exp Flow>0); [11] 0.35  [T, 2] 0.24 0.54  (1) 

25 MIF50  mean(Insp Flow(time(0.25 to 0.75))) ¶ [10, 
12] 

0.48  [O, 2] 0.33 0.83  (0.98) 

26 MEF50 mean(Exp Flow(time(0.25 to 0.75))) ¶ [10, 
12] 

(-) 0.32  [T, 1/2] 0.23 0.49  (1.02) 

27 Teschler  AUC btw y=1 and mean normalised flow (time(0.25:0.75))  [10] (-) 0.34  [T, 1] 0.26 0.66  (1.02) 

28 MostPromPeakW  Duration of Most Prominent Insp Peak / Ti. See Matlab 
“findpeaks” for details.  

New 0.48  [O, 1] 0.35 0.7  (0.96) 

Scooping (deviation away from normal round contour) (N=8)    

29 AA_NED (PIF - Flow at mid-Inspiration) / PIF [13] (-) 0.42  [O, 1/2] 0.29 0.74  (1.04) 

30 AreaUnderPeaksI AUC between flow and connected peaks New (-) 0.49  [O, 1/2] 0.35 0.76  (1.12) 

31 QuadI Absolute AUC between a quadratic best fit to 3 points in 
inspiration (x,y: start insp, 0; Ti/2, 1; end insp, Ti) and actual 
inspiratory waveform, divided by Ti. 

[14] (-) 0.46  [O, 1/2] 0.31 0.82  (1.02) 

32  QuadI50  Same as SinI but AUC from 25th to 75th centiles of 
inspiratory time, divided by Ti 

[12] (-) 0.46  [O, 1/2] 0.31 0.82  (1.02) 

33 QuadE  Same as SinI but during expiration New (-) 0.33  [O, 1/2] 0.30 0.77  (1) 

34 InvParabI  Absolute AUC between an inverted parabola (with matched 
peak flow [value=1] forced to be zero at the start and end of 
inspiration) and inspiratory waveform, divided by Ti: Fit 
equation is y=c×((1-(x.^2)/(N/2)^2)); c is maximum 

New  (-) 0.45  [O, 1/2] 0.33 0.78  (1) 
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inspiratory flow (equal to 1), N is the length of the 
inspiratory flow, x is the adjusted time base, shifted to be 
equal about zero. 

35 EllipseI  Same as InvParabI but using an ellipse fit to Inspiration: 
y=c×(((1-(x.^2)/(N/2)^2)).^(1/2)) 

New (-) 0.49  [O, 1/2] 0.35 0.78  (1.03) 

36 HypcosI  Same as InvParabI but using hyperbolic cosine fit to 
Inspiration, y=c×((1-cosh((x/(N/2)) × 
log(1+b+sqrt(2+b)×sqrt(b)))+b)/b); b is set as a constant = 
10. 

New (-) 0.49  [O, 1/2] 0.36 0.8  (1.02) 

Asymmetry (N=9)    

37 AsymIndex † Expiratory flow limitation algorithm based on asymmetry [15] (-) 0.32  [O, 2] 0.23 0.61  (1.04) 

38 SkewDistInsp *  § skewness(distribution data of Insp flow) ¶[16] 0.27  [T, 1/2] 0.24 0.82  (1.01) 

39 KurtDistInsp * § kurtosis(distribution data of Insp flow) ¶[14] (-) 0.3  [T, 1] 0.24 0.44  (1) 

40 SkewDistExp *  § skewness(distribution data of Exp flow) ¶[16] (-) 0.3  [T, 1] 0.24 0.54  (0.91) 

41 KurtDistExp * § kurtosis(distribution data of Exp flow) ¶[14] (-) 0.28  [T, 1/2] 0.23 0.25  (0.96) 

42 AsymmetryInsp * (areaL/AreaInsp Flow)-(areaR/AreaInsp Flow) [11] 0.27  [O, 2] 0.24 0.6  (1) 

43 KurtDataInsp * kurtosis(Insp Flow);  [11] 0.27  [O, 1/2] 0.23 0.66  (0.96) 

44 AsymmetryExp *  (areaL/AreaExp Flow)-(areaR/AreaExp Flow) [11] (-) 0.29  [T, 2] 0.24 0.51  (0.73) 

45 KurtDataExp * kurtosis(Exp Flow) [11] (-) 0.31  [T, 1/2] 0.23 0.42  (1.01) 

Timing and volume ratio measures (N=28)    

46 Ti_Ttot Ti / (Ti+Te) [8, 17] (-) 0.32  [O, 2] 0.28 0.7  (1.04) 

47 Ti_Te  Ti / Te [18] (-) 0.32  [T, 1] 0.28 0.62  (1.04) 

48 TTran_i_Ti ‡ Transition time (Insp to Exp) / Ti [7] 0.27  [T, 1/2] 0.28 0.66  (1.03) 

49 TTran_i_Ttot ‡  Transition time (Insp to Exp) / Ttot [7] 0.27  [T, 1/2] 0.26 0.69  (1.04) 

50 TTran_e_Te ‡ Transition time (Exp to Insp) / Te [7] (-) 0.29  [T, 1/2] 0.25 0.45  (0.95) 

51 TTran_e_Ttot ‡ Transition time (Exp to Insp) / Ttot [7] (-) 0.27  [T, 1] 0.23 0.56  (0.89) 

52 VTi_VTe  VTi / VTe [9] (-) 0.3  [T, 1] 0.23 0.15  (0.99) 

53 VTi_VT VTi / VT where VT = (VTi×Ti+VTe×Te) / (Ti + Te) [9] (-) 0.3  [T, 1] 0.23 0.15  (0.99) 

54 VTe_VT  VTe / VT where VT = (VTi×Ti+VTe×Te) / (Ti + Te) [9] 0.28  [T, 1/2] 0.23 0.33  (1) 

55 VPEF/VTe  Volume at PEF / VTe  [19, 20] 0.27  [T, 2] 0.23 0.14  (1.1) 

56 VPIFVTi Insp Volume at PIF / VTi  ¶[21] (-) 0.27  [O, 2] 0.23 0.67  (1.01) 

57 InspVol_03Ti Insp Volume at ⅓ × Ti ¶[21] (-) 0.27  [T, 2] 0.23 0.71  (0.98) 

58 PIF_MIF  Peak Insp flow / Mean Insp flow  [16] (-) 0.41  [O, 1/2] 0.30 0.72  (1.01) 

59 FTi  Inspiratory fall time, 90% to 10% (of PIF) / Ti ¶[22] (-) 0.28  [O, 2] 0.23 0.69  (1.11) 

60 RTi  Inspiratory rise time, 10% to 90% (of PIF) / Ti ¶[22] (-) 0.3  [O, 2] 0.26 0.67  (1.2) 

61 DTi  Inspiratory dwell time, flow >= 90% (of PIF) / Ti ¶[22] 0.37  [O, 1/2] 0.27 0.55  (0.97) 

62 FTe  Expiratory fall time, 90% to 10% (of PEF) / Te [22] (-) 0.31  [O, 2] 0.26 0.47  (1.02) 

63 RTe  Expiratory rise time, 10% to 90% (of PEF) / Te [22] 0.3  [T, 1/2] 0.25 0.57  (1) 

64 DTe  Expiratory dwell time, flow >= 90% (of PEF) Te [22] 0.33  [O, 1/2] 0.24 0.57  (1) 

65 PIF_PEF Peak Insp flow / Peak Exp flow [16, 23] (-) 0.28  [O, 1/2] 0.27 0.62  (0.97) 

66 MIF_MEF mean Insp flow to mean Exp flow ¶[16] (-) 0.32  [O, 1/2] 0.28 0.64  (0.96) 

67 MIF50_MEF50 mean (Insp Flow(time(0.25 to 0.75))) / same in Exp ¶(17) (-) 0.28  [O, 1/2] 0.24 0.64  (0.96) 

68 SeriesIEflow ratio of Insp flow to Exp flow at mid volumes [24] (-) 0.27  [T, 1] 0.23 0.13  (1.03) 

69 SeriesIEtime ratio of Insp time to Exp time at mid volumes ¶[24] (-) 0.36  [T, 1] 0.32 0.55  (0.97) 

70 KaplanIEvol ratio of Insp volume to Exp volume at mid times ¶[24] 0.27  [T, 2] 0.23 0.14  (1.1) 

71 TpeakI_Ti  Time to PIF / Ti  ¶[25] (-) 0.27  [O, 2] 0.24 0.72  (1) 

72 TpeakE_Te Time to PEF / Te [19, 25, 
26] 

0.32  [T, 1/2] 0.26 0.59  (1.01) 
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73 TpeakI_TpeakE  Time to PIF / time to PEF ¶(17) (-) 0.33  [O, 1/2] 0.28 0.61  (1.01) 

Fluttering (N=12)    

74 Power5to12I * power in Insp flutter [5 to (Fs/2) Hz]/ PIF squared [9] (-) 0.47  [O, 1/2] 0.42 0.6  (1.02) 

75 Power5to12E * power in Exp flutter [5 to (Fs/2) Hz]/ PEF squared [9] (-) 0.31  [O, 1/2] 0.26 0.54  (1.04) 

76 InspExpFlutPowOrig * power in Insp flutter / power in Exp flutter [5 to (Fs/2)] ¶[9] (-) 0.3  [O, 2] 0.24 0.46  (0.83) 

77 InspExpFlutPowOrig_
Sum * 

power in Insp / (Pow Insp + Pow Exp) ¶[9] (-) 0.3  [O, 2] 0.24 0.46  (0.83) 

78 InspFlutPow4to7 * power in Insp flutter [4-7 Hz]  / PIF squared ¶[9] (-) 0.34  [O, 1/2] 0.29 0.57  (0.95) 

79 ExpFlutPow4to7 * power in Exp flutter [4-7 Hz] / PEF squared ¶[9] (-) 0.31  [T, 1/2] 0.24 0.49  (1.01) 

80 InspExpFlutPow4to7 * power in Insp flutter / power in Exp flutter [4-7 Hz] ¶[9] 0.28  [O, 1/2] 0.25 0.58  (0.97) 

81 InspExpFlutPow4to7_
Sum * 

power in Insp flutter / (pow in Insp + pow in Exp [4-7 Hz]) ¶[9] 0.28  [O, 1/2] 0.25 0.58  (0.97) 

82 InspFlutPow8to12 * power in Insp flutter [8-12 Hz] / PIF squared ¶[9] (-) 0.43  [O, 1/2] 0.40 0.57  (0.92) 

83 ExpFlutPow8to12  * power in Exp flutter [8-12 Hz] / PEF squared ¶[9] (-) 0.31  [T, 1/2] 0.24 0.53  (0.85) 

84 InspExpFlutPow8to12 
* 

power in Insp flutter / power in Exp flutter [8-12 Hz] ¶[9] (-) 0.29  [O, 1] 0.23 0.2  (0.9) 

85 InspExpFlutPow8to12
_Sum * 

power in Insp flutter / (pow in Insp + pow in Exp [8-12 Hz]) ¶[9] (-) 0.28  [O, 2] 0.23 0.36  (0.91) 

 
Bivariate results are not cross-validated, showing timing variant as O (original) or transition (T) and transform (1/2, 1 or 2) for highest coefficient of 
determination for pneumotachogragh (Pneumotach.) derived feature value vs flow:drive. Transform and timing variant held for nasal pressure 
(Pnasal) derived feature value vs flow:drive. The sign of the corresponding correlation coefficient is presented as prefix (-) if negative. Bias is nasal 
pressure feature value / pneumotach feature value. AUC = Area Under Curve. Ti = Inspiratory Time. Te = Expiratory Time. Insp = Inspiration. Exp = 
Expiration. PIF = Peak Inspiratory Flow. PEF = Peak Expiratory Flow. MIF = Mean Inspiratory Flow. MEF = Mean Expiratory Flow. btw = between. 
Ref = Reference. Fs = Sample Rate. Hz = Hertz. ¶ Adapted based on cited reference. *Uses uniform length for timing. § Flow waveform shape 
preserved as a distribution. † Only original timing variant used during processing. ‡ Only transition timing variant used during processing. 
 
 

Feature reduction 

Removal of non-robust features. We conducted a sensitivity analysis to ensure that the model presented is 

robust, and not subject to significant performance degradation due to subtle changes in input parameters. As 

demonstrated in Table S2, we observed no reduction in model performance when increasing the R2 threshold 

for inclusion, up to 0.5. Further increases to the inclusion threshold resulted in a steady progressive reduction 

in performance using pneumotachograph, and a step static decline in performance using nasal pressure. 

Pre-screening with separate data. In a preliminary implementation of this work (prior to the discovery of non-

robust features) we used a feature pre-screening process with a separate dataset (see “Feature pre-screening 

with external data” below). However, we chose not to implement pre-screening for the final method based on 

the following: 1) The discovery of non-robust features (pneumotach versus nasal pressure) meant that pre-

screening (before robustness was known) would remove robust features from the selection pool that would 

then be excluded later. 2) Pre-screening had negligible influence on the model performance but added 

complexity. 
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Table S2. Sensitivity analysis 

R2 threshold for 
feature-term 

inclusion 

Number of feature-terms 
in model 

Performance using 
pneumotachograph (R2) 

Performance 
using nasal 

pressure (R2) 

0 495 0.59 0.48 

⅓ 406 0.58 0.48 

½ 295 0.58 0.48 

⅔ 127 0.56 0.39 

¾ 44 0.54 0.39 

 
Threshold for threshold for inclusion is the association (as coefficient of determination, R2) between pneumotachograph derived feature-term 
and corresponding nasal pressure derived feature-term. The Number of feature-terms in model is the minimum number from each loop of the 
leave-one-out cross-validation. The results reported are breath level association for cross-validated multivariable model predicted flow:drive and 
gold-standard flow:drive. Results presented are cross-validated values. 
 
 

Multivariable linear regression to predict airflow obstruction 

As described in the main manuscript, multivariable linear regression with backwards elimination was used to 

model the relationships between shape features and airflow obstruction (continuous variable, ratio of 

flow:drive). Feature-terms with coefficient of determination R2≤0.5 between pneumotachograph derived 

feature and nasal pressure derived feature, were excluded from analysis. Figure S3 shows cross-validated 

testing performance increasing rapidly, while mean absolute error falls rapidly for the first three features. We 

observed a steady and progressive increase in performance with increasing feature number and model 

complexity, with performance plateauing by 30 features. We choose a value of 25 features as a sensible 

compromise between accuracy and complexity.  

Model weighting. The regression was inversely weighted based on the number of breaths in each airflow 

obstruction class (normal: flow:drive>90%; mild: 70-90%, moderate: 50-70%; severe: 30-50%, very severe: 

<30%).  
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Figure S3. Left. Performance versus number of feature terms with pneumotachograph airflow. Performance (cross-validated) increased with each 
additional feature included. Middle. By 25 features (vertical bar), performance was at ~4.6% of the total error (at 100 feature-terms). Right. 
Predictive performance confusion matrix for each severity classification, with thresholds being >90% Normal, 70-90% Mild, 50-70% Moderate, 30-
50% Severe, <30% Very Severe (V.Severe). Each column sums to 100%, and indicates the fraction of predicted breaths in each class that were 
correctly classified. On average, the classification prediction was exact in 39.7% of breaths, and within one severity class in 81.7% of breaths. 
Classification performance for individuals is provided in Table S4. 

For consistency with our primary analysis with pneumotachograph flow, we used 25 features and the 

corresponding beta coefficients in our nasal pressure flow surrogate analysis. Similar to our primary results, 

we observed an initial rapid increase in performance, followed by varied increases in performance up to 25 

features (Figure S4). In contrast to our primary analysis, we observed that performance continued to rise 

beyond 25 features, albeit very slowly. This may indicate that a model developed using nasal pressure signal 

requires a different number of features to train. We note that the results of this analysis could be improved 

simply by selecting the optimal number of features. 

 

 

Figure S4. Left: Performance versus number of feature terms with transformed nasal pressure. Performance increased with each feature added, 
and continued to increase slowly beyond 25 features. Right: Predictive performance confusion matrix for each severity classification, with 
thresholds being >90% Normal, 70-90% Mild, 50-70% Moderate, 30-50% Severe, <30% Very Severe (V.Severe). Each column sums to 100%, 
and indicates the fraction of predicted breaths in each class that were correctly classified. On average, the classification prediction was exact in 
34.8% of breaths, and within one severity class in 76.3% of breaths.  
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Table S3. Multivariable linear regression model (25 features) to estimate airflow obstruction severity  

Feature 
No. 

Feature  
Timing 
method 

Transform 

Multivariate Bivariate (R2)  

β ± SE 
Pneumo. 
feature vs  
flow:drive 

Pneumo. 
feature  

vs Pnasal 
feature 

Bias 
(Pnasal / 
Pneumo.) 

 Intercept   -1.22 ± 0.04    

75 Power5to12E O 1/2 -1.88 ± 0.05 (-) 0.31 0.54 1.04 

74 Power5to12I O 1/2 -4.48 ± 0.09 (-) 0.47 0.6 1.02 

33 QuadE O 1/2 -0.70 ± 0.02 (-) 0.33 0.77 1 

32 QuadI50 O 1/2 0.91 ± 0.02 (-) 0.46 0.82 1.02 

30 AreaUnderPeaksI O 1/2 -0.39 ± 0.01 (-) 0.49 0.76 1.12 

30 AreaUnderPeaksI O 2 1.53 ± 0.04 (-) 0.37 0.69 1.57 

38 SkewDistInsp O 1/2 0.12 ± 0.003 0.27 0.81 1.13 

57 InspVol_03Ti O 1 -0.75 ± 0.02 (-) 0.26 0.64 1 

1 MIF_PIF O 1 0.87 ± 0.01 0.45 0.74 0.98 

33 QuadE O 1 0.25 ± 0.01 (-) 0.32 0.71 1 

3 Ali_ExpFlat T 1/2 0.98 ± 0.03 0.28 0.6 0.99 

46 Ti_Ttot O 1 -3.44 ± 0.08 (-) 0.31 0.72 1.02 

46 Ti_Ttot O 1/2 4.15 ± 0.10 (-) 0.3 0.72 1.01 

45 KurtDataInsp O 1/2 0.26 ± 0.01 0.27 0.66 0.96 

45 KurtDataInsp O 1 -0.043 ± 0.002 0.27 0.65 0.93 

31 QuadI T 1 -0.42 ± 0.01 (-) 0.43 0.81 1.01 

3 Ali_ExpFlat T 1 -0.71 ± 0.02 0.27 0.63 0.98 

21 AA_ExpFlat80Te O 2 0.18 ± 0.01 0.34 0.56 0.99 

74 Power5to12I T 1 27.6 ± 0.69 (-) 0.37 0.51 1.04 

74 Power5to12I T 1/2 -3.28 ± 0.11 (-) 0.42 0.65 1.02 

44 AsymmetryExp T 1 -0.12 ± 0.005 (-) 0.28 0.65 0.85 

72 TpeakE_Te O 1 -0.43 ± 0.01 0.29 0.7 1.03 

55 VPEF_VTe O 1/2 0.45 ± 0.02 0.31 0.54 1 

73 TpeakI_TpeakE T 1/2 0.031 ± 0.001 (-) 0.33 0.54 1.03 

78 InspFlutPow4to7 O 1/2 0.82 ± 0.05 (-) 0.34 0.57 0.95 

 

Features are in order of importance based on backwards feature elimination (i.e. Power5to12E was the final feature remaining after sequential 
elimination). Feature No. corresponds with Table S1. Timing method O and T denote “original” timing and “transition” timing methods for breath 
detection. Transform describes the exponent: ½ = square-root transformed, 1 = un-transformed, 2 = squared (note: only magnitudes were 
transformed i.e. negative values remained negative). β, the beta coefficient estimates. SE, standard error of the coefficient estimates. All terms 
were statistically significant contributors (note very small values of SE) with P<1x10-50. Bivariate performance is not cross-validated.  
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Table S4. Cross-validated classification performance in individuals 

 

Patient 
ID# 

Pneumotachograph flow features 
 

Nasal pressure features 
 Exact Class % Within One Class % Exact Class % Within One Class % 

1 57.7 94.8 - - 
2 40.2 82.1 45.4 90 
3 47.1 85.3 - - 
4 37.3 83.3 34.6 82.1 
5 37.5 73.9 - - 
6 37.3 72 30 68.1 
7 30.1 72.3 29.2 69.3 
8 38.4 76.4 - - 
9 23.1 52.5 - - 

10 52.4 92.1 - - 
11 46.2 88.5 - - 
12 35.8 75.9 - - 
13 40.8 81.9 40.1 83.7 
14 30.7 64.8 - - 
15 55 94 - - 
16 54.7 95.5 - - 
17 34 79.7 35.5 78.5 
18 28.5 60.1 - - 
19 43.9 81.8 - - 
20 45.9 85.1 - - 
21 42.6 84.8 - - 
22 36.3 79.2 - - 
23 35.8 75.7 - - 
24 48.8 86.9 - - 
25 42.5 82.4 - - 
26 43.7 89.2 40.2 81 
27 49.2 90.8 41.9 84.8 
28 36.4 81 25 54.6 
29 23.7 68.6 27.9 68.5 
30 34.9 76.8 36.2 78.2 
31 30.1 79.3 - - 
32 39.9 76.6 - - 
33 33.6 73.5 - - 
34 46.5 86.9 39.3 77 
35 37 75.8 - - 
36 37.5 82.2 - - 
37 43.6 83.9 42.3 83.2 
38 39.1 80.2 29.1 66.6 
39 42.6 82.4 35.8 74.6 
40 42.9 84.6 44.8 84.4 
41 30.8 58.1 28.3 56.1 

 
Individual patient performance for categorisation into normal, mild, moderate, severe and very severe flow-limited classes using the 
pneumotachograph flow shape features. The “Exact Class %” column indicates the proportion of breaths that classified exactly, while the “Within 
One Class %” column shows the proportion of breaths that were correct, if accepting the adjacent class as correct. All values represent the 
percentage correctly classified using flow shape alone, assessed against gold-standard.   
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Simplified 5-feature model 

Table S5 presents a simplified model for estimating flow:drive utilising only five feature-terms. While we 

observe a slight reduction in breath-level overall performance, it continues to perform remarkably well at the 

patient-level, in pneumotachograph derived feature-terms (see Figure S5). This reduced feature model 

performs adequately well in nasal pressure derived feature terms (see Figure S6). 

The five features-terms in our simplified model quantified signal variability (spectral power) in inspiration 

and expiration respectively, the deviation from a normal rounded contour in inspiration and expiration 

respectively, and the magnitude of “scooping” between multiple inspiratory peaks (when present). The major 

role of expiratory shape abnormalities in our estimation of pharyngeal airflow obstruction (often referred to 

as “inspiratory flow limitation”)—was unexpected, but is consistent with the increased expiratory resistance 

observed in some patients [15, 27, 28]. 

 

Table S5. Multivariable linear regression model (5 features) to estimate airflow obstruction severity 

Feature 
No. 

Feature 
Timing 
method 

Transform 
Multivariate 

β ± SE 

 Intercept   1.3 ± 0.003 

75 Power5to12E O ½ -2.32 ± 0.04 

74 Power5to12I O ½ -4.17 ± 0.05 

33 QuadE O ½ -0.24 ± 0.003 

32 QuadI50 O ½ -0.68 ± 0.01 

30 AreaUnderPeaksI O ½ -0.3 ± 0.01 

 

Feature No. corresponds with Table S1. Timing method O and T denote “original” timing and “transition” timing methods for breath detection. 
Transform describes the exponent: ½ = square-root transformed, 1 = un-transformed, 2 = squared (note: only magnitudes were transformed i.e. 
negative values remained negative). β, the beta coefficient estimates. SE, standard error of the coefficient estimates.  
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Figure S5. Reduced feature model performance, using pneumotachograph flow features. (Top Left) The association between the reduced feature 
model predicted flow:drive values and the full 25 feature model predicted flow:drive values is very high (R2=0.85). (Top Right) Predictive 
performance confusion matrix for each severity classification, with thresholds being >90% Normal, 70-90% Mild, 50-70% Moderate, 30-50% 
Severe, <30% Very Severe (V.Severe). Each column sums to 100%, and indicates the fraction of predicted breaths in each class that were 
correctly classified. On average, the classification prediction was exact in 42.6% of breaths, and within one severity class in 83.8% of breaths. 
(Bottom Left) Scatter plot showing a strong association between reduced feature model predicted flow:drive and gold-standard flow:drive values. 
The box plot overlay shows summary statistics (box and central line show IQR and median respectively, whiskers show 10th and 90th percentiles) 
for breaths within each severity classification. (Bottom Right) Scatter plot showing the novel patient level metric, median flow:drive (during sleep, 
including apnoea breaths). A very strong association exists between reduced feature model predicted and gold-standard patient median flow:drive 
during sleep.  (R2, coefficient of determination) 
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Figure S6. Reduced feature model performance, using nasal pressure features. (Top Left) The association between the reduced feature model 
predicted flow:drive values and the full 25 feature model predicted flow:drive values is moderate (R2=0.59). (Top Right) Predictive performance 
confusion matrix for each severity classification, with thresholds being >90% Normal, 70-90% Mild, 50-70% Moderate, 30-50% Severe, <30% 
Very Severe (V.Severe). Each column sums to 100%, and indicates the fraction of predicted breaths in each class that were correctly classified. 
On average, the classification prediction was exact in 35.2% of breaths, and within one severity class in 76.4% of breaths. (Bottom Left) Scatter 
plot showing a strong association between reduced feature model predicted flow:drive and gold-standard flow:drive values. The box plot overlay 
shows summary statistics (box and central line show IQR and median respectively, whiskers show 10 th and 90th percentiles) for breaths within 
each severity classification. (Bottom Right) Scatter plot showing the novel patient level metric, median flow:drive (during sleep, including apnoea 
breaths). A very strong association exists between reduced feature model predicted and gold-standard patient median flow:drive during sleep.  
(R2, coefficient of determination). 
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External validation 

We examined 29 baseline sleep studies as part of a separate investigation (NCT02489591) in which 

pneumotachograph airflow was measured via a sealed nasal mask. Participants details: 19M:10F, age = 49±11 

years, BMI = 32 ± 7 kg/m2, neck circumference = 40 ± 5 cm, AHI = 45 ± 28 events/hr (range = 2 to 105 

events/hr). Each study was scored carefully for clinically-relevant respiratory events (30% reduction in flow 

in association with either 3% desaturation or arousal) and EEG arousal start and end times were carefully 

scored (>3 seconds with no upper limit). Breaths were automatically labelled as likely “normal” or likely 

“obstructed” as follows: Breaths within the margins of a scored arousal that had a level of ventilation above 

the local 3 min average were considered likely “normal”. Breaths within the margins of scored obstructive 

hypopnoea with a level of ventilation at least 30% below the local average were considered likely 

“obstructed”. In total, we identified 9183 “normal” (arousal) breaths and 7544 “obstructed” (hypopnoea) 

breaths. 

We estimated flow:drive values by applying the final 25 feature final model presented above, and examined 

the discriminative capacity of our method to separate “normal” versus “obstructed” breaths. A threshold of 

flow:drive < 70% (moderate-to-severe airflow obstruction) was used for a binary classification. We observed 

a positive predictive value of 88% and negative predictive value of 85% (Figure S7). Alternatively, use of the 

5-feature model yielded similar results, with a positive predictive value of 88% and negative predictive value 

of 84% (not shown).  

 

Figure S7. Classification performance using the 25 feature final model, with flow shape feature-terms derived from pneumotachograph flow in an 
alternate dataset. Left: Scatter plot showing the probability of a breath being “normal” (i.e. in arousal with larger than average flow) or “obstructed” 
(i.e. obstructive hypopnoea with <70% of normal flow). Right: Performance matrix. Each column sums to 100%, and as such can be used to 
quickly assess the fraction of breaths correctly classified. The values within each division of the confusion matrix show the proportion of total 
breaths. Positive predictive value is 88%. Negative predictive value = 85%. 
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Feature pre-screening with external data 

As mentioned above, we also tested whether pre-screening features using this separate dataset might have 

improved the final model predictive value (potentially by early elimination of features that were of limited 

independent value in the determination of airflow obstruction). First, 165 feature terms were calculated (81/85 

with “original” timing, and 84/85 with “transition” timing); multivariable logistic regression with backwards 

elimination was used to identify the 50 best feature terms (including timing variants) that discriminated 

between “normal” (arousal) breaths and “obstructed” (hypopnoea) breaths as defined above. This logistic 

regression model had positive predictive value of 89% and negative predictive value of 89% (cross-validated 

performance).  

We then repeated the main flow shape analysis (Table S3, Figures 3 and 5) starting with pre-screened feature 

list (50 instead of 165), calculating the 3 transforms (square-root, untransformed, squared; 150 instead of 495), 

and then removing features with R2 (pneumotach versus nasal pressure) <0.5 (leaving 92 instead of 295). 

Model performance at a breath level was similar with versus without pre-screening: For pneumotach analysis, 

R2 = 0.58 under both conditions. For nasal pressure analysis, R2 = 0.43 and 0.48 respectively. Thus there was 

no evidence to support the utility of the feature pre-screening approach described.  
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Assessing Central versus Obstructive Pathophysiology: Future Directions 

Strictly speaking, flow:drive indicates the magnitude of pharyngeal obstruction. Out of context with the changes in flow 

during respiratory events, flow:drive alone provides insufficient information to strictly determine a) the magnitude of 

central drive during events (Y = flow ÷ flow:drive), and b) whether drive is rising or falling during hypopneas. Example 

analysis showing two patients with significantly different flow and drive patterns, which can be inferred from the 

estimated flow:drive (flow shapes), are shown in Figure S8.  

 

Figure S8. Ensemble-averaged hypopnea data in two patients illustrating evolving flow, drive, and obstruction across breaths. (A) The first patient (AHI=39 
events/hr) exhibits increasing drive in response to falling flow throughout the hypopnea (horizontal bar, 8 breaths; top traces). Here, a progressively rising drive 
can be inferred from the observation that flow:drive falls by more than flow (bottom traces). (B) The second patient (AHI=80) exhibits a reduction in drive concurrent 
with the loss of flow; drive briefly falls marginally below the eupneic level. Here, a progressively falling drive can be inferred from the observation that flow:drive 
falls by less than flow. Drive and flow also change in parallel (positively associated); one may interpret that the fall in drive is facilitating the event itself. Ensemble 
averages were calculated for all available scored hypopneas in both patients; median data are shown for each breath. Ventilatory drive data are based on calibrated 
diaphragm EMG. 
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