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Online Data Supplement 

Supplementary methods 

 

Histological evaluation, Pathological staging and CT imaging protocols 

Lung tumours were classified histologically by using the 2015 World Health 

Organization (WHO) Classification of Tumours of the Lung classification system. For 

pathological staging, the TNM stage of tumours was determined according to the 

American Joint Committee on Cancer (AJCC), 7th edition. The scanner parameters 

from the two hospitals were as following: 

Shanghai Pulmonary Hospital: Chest CT images of 603 patients were acquired 

on Philips Brilliance 40 and Siemens Defintion AS in Shanghai pulmonary hospital. 

The acquisition parameters of Philips Brilliance 40 were as following: tube voltage = 

120 kV; tube current = 200 mA; rotation time = 0.75 s; detector collimation = 40 mm; 

field of view (FOV) = 30 × 30 cm; pixel matrix=512 × 512; Filter sharp (C) for CT 

reconstruction; reconstruction thickness=0.75 mm; reconstruction interval=0.75 mm. 

The Siemens Defination AS used the following acquisition parameters: tube 

voltage=120 kV; tube current = 130 mA; rotation time = 0.5 s; detector collimation = 

40 mm; FOV = 30 × 30 cm; image matrix = 512 × 512; kernel B31f medium sharp+ 

for CT reconstruction; reconstruction thickness=1.0 mm; reconstruction interval=1.0 

mm. 

Ioversol (350 mg of iodine per millilitre; Jiangsu Hengrui Medicine, Jiangsu, 

China) was injected at a dose of 1.3-1.5 mL per kilogram of body weight at a rate of 

2.5 mL/sec by using an automated injector. 

 



 2 

Tianjin Medical University: In Tianjin medical university cancer institute and 

hospital, chest CT images of 241 patients were acquired using the three types of CT 

scanners: Somatom Sensation 64 (Siemens Medical Solutions, Forchheim, Germany), 

Light speed 16 (GE Medical Systems, Milwaukee, WI), and Discovery CT750 HD 

scanner (GE Medical Systems, Milwaukee, WI). 

For the 64-detector scanner, scanning parameters were as following: 120 kV with 

tube current adjusted automatically; pitch of 0.969; reconstruction thickness=1.5 mm; 

reconstruction interval=1.5 mm; pixel matrix=512 × 512. For the 16-detector scanner 

and Discovery CT750 HD scanner, scanning parameters were as following: tube 

voltage=120 kV; tube current was 150-200 mA; beam pitch, 0.969; reconstruction 

thickness=1.25 mm; reconstruction interval=1.25 mm. FOV = 40 ×40 cm; rotation 

time=0.6s; detector collimation=40 mm; pixel matrix=512 × 512. 

Non-ionic iodinated contrast material (300 mg of iodine per millilitre, Ul-travist; 

Bayer Pharma, Berlin, Germany) was injected at a dose of 1.3–1.5 mL per kilogram 

of body weight at a rate of 2.5 mL/sec by using an automated injector. CT enhanced 

scanning was performed with a 70-second delay. 

 

Mathematical description of the DL model 

The computational units in the DL model are defined as layers, which include 

convolution, activation, pooling and batch normalization. The details are explained as 

following. 

Convolution. Convolution is used to extract features from tumour image. Different 

convolutional filters can extract different features to characterize the tumour. 

Assuming matrix 𝐼 = (
𝐼11 𝐼12 𝐼13
𝐼21 𝐼22 𝐼23
𝐼31 𝐼32 𝐼33

)  is the mathematical representation of the 
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tumour image, and matrix 𝐾 = (
𝑘11 𝑘12
𝑘21 𝑘22

)  is the convolutional filter. Then, the 

output of the convolution layer is F = conv(I, K), where conv represents convolutional 

operation. This can be further understood as the following formula.  

𝐹 = 𝑐𝑜𝑛𝑣(𝐼, 𝐾)

= (
𝐼11 ∗ 𝑘11 + 𝐼12 ∗ 𝑘12+𝐼21 ∗ 𝑘21 + 𝐼22 ∗ 𝑘22 𝐼12 ∗ 𝑘11 + 𝐼13 ∗ 𝑘12+𝐼22 ∗ 𝑘21 + 𝐼23 ∗ 𝑘22
𝐼21 ∗ 𝑘11 + 𝐼22 ∗ 𝑘12+𝐼31 ∗ 𝑘21 + 𝐼32 ∗ 𝑘22 𝐼22 ∗ 𝑘11 + 𝐼23 ∗ 𝑘12+𝐼32 ∗ 𝑘21 + 𝐼33 ∗ 𝑘22

) 

The output F is called feature map. 

Activation. After the operation of convolution, the result (feature map) will be 

activated by an activation function to obtain non-linear features, here we adopt the 

“ReLU” function[1] 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥). When the input x is negative, the output 

of the activation function will be zero, and when the input is positive, the result will 

be equal to the input.  

Pooling. To select representative features that are strongly associated with EGFR 

mutation status, non-relevant and redundant features need to be eliminated. This is 

achieved by pooling operation. Assuming the feature map is 𝐹 = (

1 5 2 8
3 9 7 8
1 0 2 6
8 5 3 2

), 

whose size is 4×4, and pooling window is 2×2 with stride 2. The pooling operation 

will divide the matrix F into four disjoint small matrixes of size 2×2, each maximum 

value of the small matrix will be extracted to form the result matrix 𝑃 = (
9 8
8 6

). 

Batch normalization. To accelerate the training process of the DL model, we use 

batch normalization [2] operation to normalize the feature maps from each 
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convolutional layer. This strategy avoids gradient vanishing during training, and 

therefore accelerates the learning process of the DL model. 

 

Details of the DL model 

The DL model is similar to the DenseNet [3] but with several modifications. 

In this model, a stack of two convolutional layers and two batch normalization layers 

is defined as a group. The first 20 groups form the sub-network 1, where each group is 

connected to all the preceding groups (dense connection). Sub-network 1 shares the 

same structure with the first 20 layers in the DenseNet that was pre-trained using 1.28 

million natural images. Layers in the sub-network 2 are freshly trained using images 

from EGFR mutation dataset aiming at capturing the map between image features to 

EGFR mutation labels. These freshly added convolutional layers are densely 

connected to the sub-network 1. Finally, this model predicts the probability of the 

tumour being EGFR-mutant. 

 

Training process of the DL model 

Model training aims at optimizing the parameters of the DL model to build the 

relationship between CT image and EGFR mutation status. The model training is an 

iterative process, which optimizes the model at each iteration until the model achieves 

the best predictive performance. At each iteration, we used cross entropy as cost 

function to measure the predictive performance of the DL model as following: 

L(𝑤) =
1

𝑁
∑ [𝑦𝑛𝑙𝑜𝑔𝑝𝑛 + (1 − 𝑦𝑛)𝑙𝑜𝑔(1 − 𝑦𝑛)] + 𝜆|𝑤|

𝑁

𝑛=1
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In this formula, w was the parameter of the model that needed to be trained; N was the 

training sample number; 𝑦𝑛 represented the true EGFR mutation status (1 for EGFR-

mutant, 0 for EGFR-wild type); 𝑝𝑛  was the predicted EGFR-mutant probability. 𝜆 

was the regularization term used to avoid over-fitting, which was set to 5×10-4. If the 

cost function L(𝑤) was not minimum, we used Adadelta algorithm [4] to update the 

parameters of the DL model and minimize the loss function.  

Specifically, we froze the sub-network 1 first, and trained the sub-network 2 

with a learning rate of 1×10-3. This is necessary because the sub-network 2 was 

initialized randomly and therefore generated large gradient, which may disturb the 

transferred layers in sub-network 1. After training the model on 10 epochs, we trained 

the full network with a smaller learning rate (1×10-5), and the model converged after 

30 epochs of training. 

To eliminate image intensity variance between different equipment, we 

standardized the tumour image by z-score normalization, which meant the tumour 

image was subtracted by the mean intensity value and divided by the standard 

deviation of the image intensity. In addition, all the tumour images were resized to the 

same size (64×64) using third-order spline interpolation for the DL model training. 

Our implementation of the deep learning model used the Keras toolkit and Python 2.7. 

 

Details of deep learning model visualization 

We used convolutional filter visualization technique to acquire the feature 

patterns extracted by convolutional layers [5, 6]. For each convolutional filter in the 

DL model, we input an image initialized with random white noise to observe the filter 

response. If the filter response reaches a maximum, the input image reveals the 
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feature pattern extracted by the convolutional filter; otherwise, a back-propagation 

algorithm was involved to change the input image until the filter response reaches a 

maximum. Through this convolutional filter visualization method, we can understand 

the feature patterns extracted by each convolutional filter in the DL model. 

 

Details of suspicious tumour area discovery 

When the DL model is well trained, the network established thousands 

inference paths that work together for EGFR mutation status prediction. Given a 

tumour, we calculated the gradient of the predicted value with respect to the input 

image. This gradient told us how the predicted value changes with respect to a small 

change in tumour image voxels. Hence, visualizing these gradients helped us to find 

the attention of the DL  model [5, 6]. 

 

Details of semantic model building 

 In previous study, 16 semantic features extracted from CT images (e.g., 

pleural retraction, lymphadenopathy, etc.) were reported to be significantly associated 

with EGFR mutation status in lung adenocarcinoma [7]. Therefore, we extracted these 

16 semantic features in our dataset (definitions listed in Table S4). The semantic 

features were assessed by two radiologists (10+ years’ experience) from the two 

hospitals. Afterwards, we used multivariate logistic regression to build a semantic 

model for EGFR mutation status prediction, which is consistent with the published 

study. 
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Supplementary Tables 

 

Table S1. Predictive performance of the DL model in different tumour stages. 

Stage 
AUC 

Primary cohort Validation cohort 

I 0.87 (0.86, 0.88) 0.81 (0.78, 0.84) 

II 0.98 (0.97, 0.99) 0.98 (0.96, 1.00) 

III 0.88 (0.84, 0.92) 0.76 (0.72, 0.80) 

IV 0.95 (0.91, 0.99) 0.77 (0.68, 0.86) 

AUC is area under the receiver operating characteristic curve. 

Results in the primary cohort are evaluated in the full primary cohort. 

 

 

Table S2. Clinical characteristics of patients (n = 125) with other histological types 

except for adenocarcinoma. 

Characteristics value 

Age, mean (SD), years 63.86 (9.44) 

Gender, No. (%) 

 Female 12 (9.60) 

 Male 113 (90.40) 

Histological type, No. (%)  

 Squamous cell carcinoma 96 (76.80) 

 Large cell carcinoma 17 (13.60) 

 Sarcomatoid carcinoma 6 (4.80) 

 Adenosquamous carcinoma 5 (4.00) 

 Atypical carcinoid 1 (0.80) 

Stage, No. (%)  

 I 74 (59.20) 

 II 35 (28.00) 

 III 15 (12.00) 

 IV 1 (0.80) 

EGFR mutation, No. (%)  

 EGFR-mutant 15 (12.00) 

 EGFR-wild type 110 (88.00) 

 

Table S3. Predictive performance of the DL model in other histological types of lung 

cancer. 

Methods AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) 

DL model 0.77 (0.73-0.81) 73.60 (0.71-0.76) 80.00 (72.70-88.02) 72.73 (69.70-75.77) 

AUC is area under the receiver operating characteristic curve. 

Data in parentheses are the 95% confidence interval. 
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Table S4. Univariate predictive performance of the semantic features. 

Semantic features Definition 

AUC p-value 

Primary 

cohort 

Validation 

cohort 

Primary 

cohort 

Validation 

cohort 

Pleural attachment 0-none; 1-tumor attaches to the pleura 0.537 0.422 <0.001 <0.001 

Border definition 1-well defined; 3-poorly defined; 2-otherwise 0.346 0.474 <0.001 0.238 

Spiculation 1-none; 2-fine spiculation; 3-coarse spiculation 0.502 0.608 <0.001 <0.001 

Texture 1-pure GGO; 2-mixed GGO; 3-solid 0.433 0.360 <0.001 <0.001 

Air bronchogram 0-none; 1-presence of air bronchogram 0.519 0.564 <0.001 <0.001 

Bubblelike lucency 0-none; 1-presence of bubblelike lucency 0.531 0.518 <0.001 0.182 

Enhancement 

heterogeneity 

1-homogeneous; 2-slight or moderate 

heterogeneous; 3-marked heterogeneous 
0.433 0.485 <0.001 0.002 

Vascular convergence 0-none; 1-obvious convergence 0.489 0.692 <0.001 <0.001 

Thickened adjacent 

bronchovascular bundles 

0-none; 1-normally tapering bundle leading to 

the nodule was observed to be distinctly widened 
0.484 0.679 <0.001 <0.001 

Pleural retraction 0-none; 1-presence of pleural retraction 0.431 0.551 <0.001 0.017 

Peripheral emphysema 
1-none; 2-slight or moderate focal emphysema; 

3-severe focal emphysema 
0.484 0.411 <0.001 <0.001 

Peripheral fibrosis 
1-none; 2-slight or moderate focal fibrosis; 3-

severe focal fibrosis 
0.739 0.447 <0.001 0.002 

Lymphadenopathy 

1-Thoracic lymph nodes (hilar or mediastinal) 

with short-axis diameter greater than 1 cm; 0-

otherwise 

0.533 0.437 <0.001 0.004 

Size category 1-diameter≤3 cm; 2-diameter>3 cm 0.486 0.329 <0.001 <0.001 

Long-axis diameter Longest diameter of the tumor (cm) 0.506 0.287 0.699 <0.001 

Short-axis diameter Shortest diameter of the tumor (cm) 0.464 0.306 0.254 <0.001 

AUC is area under the receiver operating characteristic curve. 

p-value is generated by independent samples t test for long-axis diameter and short-axis diameter, 

and chi-squared test for other categorical semantic features. 
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Supplementary Figures 

 

 

Figure S1. The ROIs selected by users. 

 

 

Figure S2. The process of generating input images to the DL model. All adjacent 

three image slices were combined as a three-channel image to the DL model. n1 to n6 

represent the slice numbers of the axial CT images. I1 to I4 are the four input images 

to the DL model. 
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Figure S3. Deep learning score distribution in different tumour stages. The horizontal 

dash lines are the quartiles. 

 

Figure S4. Convolutional filters trained in different datasets. Each column represents 

the same convolutional filter in different status (before training, trained in ImageNet, 

and trained in CT data). 

 

 



 11 

 

Figure S5. Univariate AUC testing for all the deep learning features from the 

Conv_24 layer and radiomic features. 
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